
Proceedings of the 20th International Conference on Distributed Computing Systems (ICDCS 2000), Taipei, Taiwan, April 2000.

On Low-Cost Error Containment and Recovery Methods for
Guarded Software Upgrading�

Ann T. Tai Kam S. Tso
IA Tech, Inc.

10501 Kinnard Avenue
Los Angeles, CA 90024

Leon Alkalai Savio N. Chau
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

William H. Sanders
Elec. & Comp. Eng. Dept.

University of Illinois
Urbana, IL 61801

Abstract
To assure dependable onboard evolution, we have developed a

methodology called guarded software upgrading (GSU). In this
paper, we focus on a low-cost approach to error containment and
recovery for GSU. To ensure low development cost, we exploit in-
herent system resource redundancies as the fault tolerance means.
In order to mitigate the effect of residual software faults at low
performance cost, we take a crucial step in devising error con-
tainment and recovery methods by introducing the “confidence-
driven” notion. This notion complements the message-driven (or
“communication-induced”) approach employed by a number of
existing checkpointing protocols for tolerating hardware faults. In
particular, we discriminate between the individual software com-
ponents with respect to our confidence in their reliability, and keep
track of changes of our confidence (due to knowledge about poten-
tial process state contamination) in particular processes. This,
in turn, enables the individual processes in the spaceborne dis-
tributed system to make decisions locally, at run-time, on whether
to establish a checkpoint upon message passing and whether to
roll back or roll forward during error recovery. The resulting
message-driven confidence-driven approach enables cost-effective
checkpointing and cascading-rollback free recovery.

1 Introduction

New-generation spaceborne computing systems, such as
NASA/JPL’s X2000 for multiple deep-space missions, must have
the ability to accomplish performance and dependability enhance-
ment during a long-life mission [1]. This capability is referred to
as evolvability. Concepts related to evolvability include hardware
reconfigurability and software upgradability.

A challenge that arises from onboard software upgrade is that
of guarding the system against performance loss caused by resid-
ual design faults introduced by the addition or modification of a
spacecraft/science function. Unprotected software upgrades may
cause severe damage to a mission. For example, NASA experi-
enced a gap in fault protection on April 10, 1981, when a timely
synchronization check was omitted after the addition of an al-
ternate reentry program [2]. As a result, the first flight of the
US space shuttle program was aborted 19 minutes before launch.
The risk of unprotected software upgrade is further exemplified by

�The work reported in this paper was supported in part by Small Busi-
ness Innovation Research (SBIR) Contract NAS3-99125 from Jet Propul-
sion Laboratory, National Aeronautics and Space Administration.

MCI WorldCom’s recent 10-day frame relay outage [3]. The out-
age began on August 5, 1999, four weeks after an upgrade to a
new switching software to allow the network to handle increased
traffic. The incident affected about 15% of MCI’s network and
30% of its customers who rely on the high-speed frame relay.

To avoid the adverse impacts of unsuccessful upgrades, re-
searchers have investigated into dependable system upgrade meth-
ods. For example, Sha et al. developed Simplex architecture which
employed “analytic redundancy” to enable error recovery for up-
graded software [4]. Powell et al. at LAAS-CNRS defined a
Generic Upgradable Architecture for Real-Time Dependable Sys-
tems (GUARDS) [5]. Both Simplex and GUARDS were aimed at
critical real-time applications and employed state-of-the-art fault
tolerance techniques. Nonetheless, both architectures required
special development effort for dedicated system resource redun-
dancy. Furthermore, the problems associated with fault tolerance
in distributed systems, such as error contamination caused by pro-
cess interaction, were not of particular concern to those projects
or the prior work in dynamic program modification [6]. In con-
trast to Simplex and GUARDS, the X2000 system has severe cost
constraints imposed on it, precluding solutions which rely on ded-
icated resource redundancies such as multiple software versions
that require expensive development effort. Moreover, the X2000
system has a distributed architecture for which error contamination
among interacting processes is a major concern for fault tolerance.

To accommodate the requirements from the X2000 architec-
ture and applications, we have developed a methodology called
guarded software upgrading (GSU). Since application-specific
techniques are an effective strategy of reducing fault tolerance cost
[7], we exploit the characteristics of our target system and applica-
tion. To ensure low development cost, we take advantage of inher-
ent system resource redundancies as the means of fault tolerance.
Specifically, from software perspective, we make use of an earlier
version, in which we have high confidence due to its long onboard
execution time, as a backup to protect the system when the new
version enters mission operation; from hardware perspective, we
make use of the processor that otherwise would be idle during a
non-critical mission phase during which onboard software upgrade
takes place, allowing concurrent execution of the new and old ver-
sions of the application software component which is undergoing
an upgrade. An informal discussion based on the initial version of
the GSU methodology was presented in [8]. The central purpose
of this paper is to elaborate and analyze the error containment and
recovery methods for GSU in further detail and depth.

1



The error containment and recovery methods for GSU are
devised based on novel adaptation and integration of the en-
abling techniques in the areas encompassing software fault tol-
erance, checkpointing and message logging based recovery, and
distributed computing. In order to mitigate the effect of resid-
ual faults in an upgraded software component, we take a crucial
step in devising error containment and recovery methods by intro-
ducing the “confidence-driven” notion. This notion complements
the message-driven (or “communication-induced”) approach em-
ployed by a number of existing checkpointing protocols for tol-
erating hardware faults. In particular, we discriminate i) between
internal and external messages in terms of their criticality to the
mission, and ii) between the individual software components with
respect to our confidence in their reliability. The resulting pro-
tocol is thus both message-driven and confidence-driven. Unlike
traditional fault tolerance schemes for distributed systems, our er-
ror containment and recovery mechanisms do not involve process
coordination or atomic action which usually results in significant
performance overhead. Instead, we keep track of changes of our
confidence (due to knowledge about potential process state con-
tamination caused by errors in the low-confidence component and
message passing) in particular processes. This, in turn, permits
the decisions on whether to take a checkpoint upon message pass-
ing, and whether to roll back or roll forward during recovery, to
be made locally by individual processes, enabling cost-effective
checkpointing and cascading-rollback free error recovery.

The remainder of the paper is organized as follows. Section 2
provides an overview of the GSU framework, followed by Section
3 which elaborates the error containment and recovery algorithms
for guarded software upgrading. Section 4 presents the formal
proofs that verify the correctness of the algorithms. The conclud-
ing remarks highlight the significance of this effort and outline our
plan for subsequent research.

2 Motivation and Overall Framework

As an engineering model intended to service multiple deep-
space missions, the X2000 architecture must accommodate a di-
versity of requirements from different missions, which demand a
computation power ranging from a single processor string to mul-
tiple strings, a throughput ranging from under 20 MIPS to over
100 MIPS, and a mass memory size ranging from 100 Mbytes to
1.5 Gbytes. Therefore, the X2000 architecture must be scalable
and distributed in order to accommodate a broad spectrum of re-
quirements. As a result, the Baseline X2000 First Delivery Archi-
tecture comprises three high-performance computing nodes (each
of which has a 128-Mbyte local DRAM), the micro-controllers
of subsystems, and a variety of devices, all connected by a fault-
tolerant bus network that complies with the commercial inter-
face standards IEEE 1394 and I2C [9]. A useful feature of the
X2000 distributed architecture is the I/O cross-strapping between
the computing nodes and the IEEE 1394 and I2C buses. This fea-
ture permits the roles of the computing nodes to be interchange-
able and the workload that comprises spacecraft and science func-
tions to be shared by and migrated among processors in an effi-
cient manner. As a result, the inherent resource redundancy in the
distributed architecture can be employed by various onboard relia-
bility enhancement activities, including guarded software upgrad-

ing. While the distributed architecture facilitates the application
of a variety of enabling technologies, it adds another dimension
of challenge to onboard guarded software upgrading, which is that
we must protect the system from failures caused by error propaga-
tion among interacting processes.

Since a software upgrade is normally conducted during a non-
critical mission phase when the spacecraft and science functions
do not require full computation power, only two processes cor-
responding to two different application software components are
supposed to run concurrently and interact with each other. To ex-
ploit inherent system resource redundancies, we let the old ver-
sion, in which we have high confidence due to its long onboard ex-
ecution time, escort the new-version software component through
two stages of GSU, namely, onboard validation and guarded oper-
ation. Further, we make use of the processor that otherwise would
be idle to enable the three processes (i.e., the two corresponding
to the new and old versions, and the process corresponding to the
second application software component) to execute concurrently.
To aid in the description, we introduce the following notation:

Pnew
1 The process corresponding to the new version of

an application software component.

Pold
1 The process corresponding to the old version of

the application software component.

P2 The process corresponding to another applica-
tion software component (which is not undergo-
ing upgrade).

Figure 1 illustrates the two-stage approach. As shown in Fig-
ure 1(a), during onboard validation the outgoing messages of the
shadow process Pnew

1 are suppressed but selectively logged (as
shown by the dashed lines with arrows), while Pnew

1 receives the
same incoming messages that the active process Pold

1 does (as
shown by the solid lines with arrows). Thus, Pnew

1 and Pold
1 can

perform the same computation based on identical input data. Note
that each of the dashed circles that encapsulate Pnew

1 and Pold
1 indi-

cates that the two processes are created by two different versions
of the same application software component.

newP1

P2

Pold
1

newP1

P2

Pold
1

(a) Onboard Validation Stage (b) Guarded Operation Stage

processor-1

processor-2

processor-3

processor-1

processor-2

processor-3

Figure 1: Two-Stage Approach to GSU

By maintaining an onboard error log that can be downloaded
to the ground to facilitate statistical modeling and heuristic trend
analysis, onboard validation facilitates the decisions on whether
and when to permit Pnew

1 to enter mission operation. If onboard
validation completes successfully, then Pnew

1 and Pold
1 switch their

2



roles and enter the guarded operation stage. In order to mini-
mize the impact on and risk to mission operation, onboard soft-
ware upgrading is usually carried out in an incremental manner.
In particular, most upgrades involve only a single software com-
ponent at a time. As a result, the interaction patterns (message
types and ordering) among the processes will remain the same
after an upgrade. Accordingly, as indicated by Figure 1(b), dur-
ing the guarded operation, Pnew

1 actually influences the external
world and interacts with process P2, while the messages of Pold

1

that convey its computation results to P2 or devices are now sup-
pressed and logged. Should an error of Pnew

1 be detected, Pold
1 will

take over Pnew
1 ’s active role, and the system will resume its nor-

mal mode until the next upgrade attempt. The guarded operation
is equipped with a set of low-cost error containment and recovery
mechanisms which are elaborated in the next section.

3 Algorithms

3.1 Basics
A major difficulty in error recovery for embedded systems is

that we are unable to roll back the effect of a computation error
after it propagates to an external device. Since error propagation
in a distributed system is, in general, caused by message pass-
ing, the invocations of the two major functions of the error con-
tainment and recovery protocol for GSU, namely, acceptance test
(AT) and checkpointing, are all associated with the message send-
ing or receiving actions. We call the messages sent by processes
to devices and the messages between processes external messages
and internal messages, respectively. In embedded systems, ex-
ternal messages are significantly more critical than internal mes-
sages because i) they directly influence the mission operation and
functions, and ii) their adverse effects can not be reversed through
rollback. Hence, in our low-cost error containment and recovery
protocol, ATs are only invoked to validate the external messages
from the processes that are potentially contaminated (see Section
3.2 for the definition of potentially contaminated process state).
Further, Pold

1 does not perform ATs because its external messages
will not be released to devices during guarded operation. On the
other hand, when Pnew

1 or P2 passes an AT successfully, it sends
a notification message to Pold

1 to let it update its knowledge about
the validity of process state and messages.

The following are the assumptions upon which we devise the
error containment and recovery algorithms:

A1) The old version of a software component that has a suffi-
ciently long onboard execution time can be considered sig-
nificantly more reliable than the upgraded version newly in-
stalled through uploading.

A2) An erroneous state of a process is likely to affect the correct-
ness of its outgoing messages, while an erroneous message
received by an application software component will result in
process state contamination.

A3) The error detection mechanism, an acceptance test (AT), has
a high coverage (the conditional probability that the testing
mechanism will reject a computation result given that the re-
sult is erroneous).

A1 implies that the likelihood that an error condition which oc-
curs in the old version of an application software component can

be considered negligible, suggesting that Pold
1 and P2 need not be

treated by the protocol as possible sources of process state contam-
ination. A2 implies that if an outgoing message is validated by AT,
then the process state of the sender process and all the messages
sent or received prior to performing the AT can be considered non-
contaminated and valid, respectively. A3 suggests that the release
of an erroneous command to an external device is unlikely to oc-
cur. Note that A1 is applicable not only to the upgrades for per-
formance tuning and accuracy improvement but also to the sched-
uled upgrades aimed at fault removal [10]. The rationale is that
the deep-space application software components which have suffi-
ciently long onboard execution times are expected to be highly re-
liable, and that the scheduled onboard fault removal usually deals
with the isolated faults that result in infrequent error conditions
tolerable by the spaceborne system. On the other hand, the new
version with a known fault removed may contain new undiscov-
ered faults.

3.2 Error Containment
During guarded operation, Pnew

1 actually influences the exter-
nal world and interacts with the process P2, while the messages
of Pold

1 that convey its computation results to P2 or external sub-
systems are suppressed and logged (although Pold

1 receives all the
messages that Pnew

1 does and fully executes in the background).
The algorithms rely on three key entities, namely,

1. A dirty bit (dirty bit), which keeps track of potential
process state contamination.

2. A message count (msg count), which keeps track of the
number of messages that are sent by a particular process
(equivalent to the sequence number of its last message).

3. A valid message register (VRnew1 ), which keeps track of the
sequence number of the last message that has been sent by
Pnew
1 and directly or indirectly validated by AT.

These entities are maintained by individual processes locally
while the information kept is shared between certain processes
through message piggybacking. To facilitate error containment
and recovery efficiency, we enforce the following confidence-
driven checkpointing rule (the necessary and sufficient condition
for checkpointing):

Checkpointing Rule: We save the state of a process via check-
pointing if and only if the process is at one of the following
points: 1) immediately before its state becomes potentially
contaminated, or 2) right after its state gets validated as a
non-contaminated state.

By “a potentially contaminated process state,” we mean 1) the
process state of the low-confidence software component Pnew

1 , or
2) a process state that reflects the receipt of a not-yet-validated
message that is sent by a process when its process state is poten-
tially contaminated. Figure 2 illustrates the above concepts. The
horizontal lines in Figure 2 represent the software executions along
the time horizon. Each of the shaded regions represents the execu-
tion interval during which the state of the corresponding process is
potentially contaminated. Note that 1) Pnew

1 is always considered
potentially contaminated, 2) P2 is treated as potentially contami-
nated after it receives an application-purpose message from Pnew

1

and before P2 passes the subsequent AT (or receives a notification

3



AT
k+1B

jA

kB

AT

j+1A

k+2B k+3B

newP1

Pold
1

P2

1m 6m

AT

Interval during which process state
is potentially contaminated

Message passing that
triggers checkpointingCheckpointing

Acceptance test

2m

Message passing that does
not trigger checkpointing

M2

M1

3m 4m 5m 7m

Figure 2: Checkpoint Establishment

message reporting that Pnew
1 passes AT), and 3) Pold

1 is regarded
as potentially contaminated after it receives a message sent by P2
when its process state is potentially contaminated and before Pold

1

is notified that P2 (or Pnew
1 ) has passed the subsequent AT.

In the diagram, checkpoints Bk, Aj , and Bk+2 are established
immediately before a process state becomes potentially contami-
nated, while Bk+1, Aj+1, and Bk+3 are established right after a
process state is validated. While all these checkpoint establish-
ments are triggered by the events of potential process state con-
tamination and process state validation which change our con-
fidence in a process, these triggering events themselves are in-
duced by message passing. In other words, a message passing
event will not trigger a process to establish a checkpoint unless
the event alters our confidence in the process state(s) — to make
a potentially contaminated process state become a validated state
or vice versa. Therefore, our algorithms are both message-driven
and confidence-driven. Consequently, as shown in Figure 2, the
message passing events indicated by the dashed lines with arrows
will not trigger checkpointing. And based on our assumption on
the relationship between message and process state, m1, m2, m3,
and m4 become valid messages after P2 subsequently passes AT.
Likewise, m6 and m7 become valid messages after Pnew

1 subse-
quently passes AT. On the other hand, the message m5 sent by P2
between checkpoints Bk+1 and Bk+2 is “inherently” considered a
valid message because it is generated by P2 when the process state
of P2 is not potentially contaminated.

The error containment algorithms for Pnew
1 , Pold

1 , and P2 are
shown in Figures 3, 4, and 5, respectively. Recall that our key
strategy for achieving error containment and recovery efficiency is
to discriminate between the individual software components with
respect to our confidence in their reliability. Accordingly, the al-
gorithms are devised in a manner such that the three concurrent
processes deal with the key entities in an asymmetric fashion, as
described in the following.

As shown in Figure 3, Pnew
1 maintains its msg count, which

keeps track of the outgoing messages of Pnew
1 and is incre-

mented when Pnew
1 sends an application-purpose message. To

assure recoverability (see Section 4), Pnew
1 attaches the value of

msg count to its outgoing messages sent to other processes.

if (outgoing_message_m_ready) {
if (external(m)) {
if (AT(m) == success) {

// Pnew1 maintains its msg count and
// conveys it to P2 and Pold1 for
// recovery purpose
msg_count++;
msg_send(m, null, device);
// inform Pold1 and P2 that prior
// messages are valid
msg_send("passed_AT", msg_count, Pold1 );
msg_send("passed_AT", msg_count, P2);

} else {
error_recovery(Pold1 , P2);
exit(error);

}
} else { // m is an internal message

msg_count++;
msg_send(m, msg_count, P2);

}
}
if (incoming_message_m_arrives) {

application_msg_reception(m);
}

Figure 3: Error Containment Algorithm for Pnew
1

Pold
1 also maintains a msg count (see Figure 4), which keeps

track of outgoing messages of Pold
1 and is incremented after Pold

1

generates an outgoing message and before the message is logged.
In addition, Pold

1 has a valid message register VRnew1 , which keeps
track of validated messages sent by Pnew

1 . VRnew1 gets updated
when Pold

1 receives a “Passed AT” notification message from Pnew
1

or P2 using the attached information. Pold
1 uses its dirty bit to

maintain knowledge about potential contamination of its own pro-
cess state. Upon receiving a “Passed AT” message from Pnew

1 (or
from P2) or a message from P2, which will turn the otherwise po-
tentially contaminated state of Pold

1 into a non-contaminated state
or vice versa, dirty bit is reset or set to 1, respectively.

P2 maintains its msg count and uses it to keep track of the
outgoing messages of Pnew

1 , as shown in Figure 5. Upon receiv-
ing an application-purpose message or a “Passed AT” notification

4



if (outgoing_message_m_ready) {
// msg_count keeps track of Pold1 ’s own messages
msg_count++;
// suppress and log the outgoing message
msg_log(m, msg_count);

}
if (incoming_message_m_arrives) {
if (m.body == "passed_AT") {

// Pnew1 or P2 reports a successful AT
VRnew1 = m.msg_count; // last valid msg of Pnew1
if (dirty_bit == 1) {

dirty_bit = 0;
checkpointing(Pold1 );

}
} else { // application-purpose message from P2

// check the piggybacked dirty bit and
// own process state
if (m.dirty_bit == 1 && dirty_bit == 0) {

checkpointing(Pold1 );
dirty_bit = 1;

}
application_msg_reception(m);

}
}

Figure 4: Error Containment Algorithm for Pold
1

message from Pnew
1 , msg count is updated based on the parame-

ter value attached to the incoming message. Upon passing its AT,
P2 attaches the value of msg count to the “Passed AT” notifi-
cation message to Pold

1 (to enable Pold
1 to update its VRnew1 ). P2

also has a dirty bit which maintains knowledge about poten-
tial process state contamination. Upon passing AT or receiving a
“Passed AT” message from Pnew

1 , P2 resets dirty bit; whereas
upon receiving an application-purpose message from Pnew

1 , P2 sets
dirty bit to 1. The value of dirty bit is piggybacked to
every application-purpose message P2 sends to Pold

1 , in order to let
Pold
1 be aware of potential process state contamination and make

a correct decision on whether to roll back or roll forward upon
the invocation of error recovery. We omit detailed description of
how the processes perform checkpointing because the algorithms
shown in Figures 4 and 5 are fairly self-explanatory in illustrat-
ing how the confidence-driven checkpointing rule described at the
beginning of this subsection is implemented.

3.3 Error Recovery
Error recovery actions are also message-driven and confidence-

driven in the sense that the AT-based error detection takes place
when a potentially contaminated process (Pnew

1 or P2) attempts to
send an external message. Upon the detection of an error, Pold

1

will take over Pnew
1 ’s active role and resume computation with P2.

Since the error containment algorithms enable Pold
1 and P2 to main-

tain their knowledge about potential process state contamination
and message validity, relatively simple error recovery algorithms
can be devised for Pold

1 and P2, as shown in Figures 6 and 7, re-
spectively. In particular, by checking their dirty bits locally, both
Pold
1 and P2 are able to make their decisions on rollback or roll-

forward in a straightforward manner. Accordingly, there are three
possible scenarios during error recovery:

Scenario 1: Both Pold
1 and P2 roll back to their most recent check-

points.

if (outgoing_message_m_ready) {
if (external(m)) {
if (dirty_bit == 1) {

if (AT(m) == success) {
dirty_bit = 0;
// msg_count of P2 keeps track of msg
// sequence number of Pnew1
msg_send(m, null, device);
msg_send("passed_AT", msg_count, Pold1 );
checkpointing(P2);

} else {
error_recovery(Pold1 , P2);

}
} else {

// outgoing msg from a clean process state,
// no check needed
msg_send(m, null, device);

}
} else { // internal message
msg_send(m, null, Pnew1 );
// piggybacking dirty_bit to msg to Pold1 to
// signal possible contamination
m = append(m, dirty_bit);
msg_send(m, null, Pold1 );

}
}
if (incoming_message_m_arrives) {

// must be from Pnew1
msg_count = m.msg_count;
if (m.body == "passed_AT") {
if (dirty_bit == 1) {

dirty_bit = 0;
checkpointing(P2);

}
} else {
if (dirty_bit == 0) {

// checkpointing before getting "dirty"
checkpointing(P2);
dirty_bit = 1;

}
application_msg_reception(m);

}
}

Figure 5: Error Containment Algorithm for P2

Scenario 2: Both Pold
1 and P2 roll forward.

Scenario 3: P2 rolls back to its most recent checkpoint, while Pold
1

rolls forward.

The scenario in which Pold
1 rolls back and P2 rolls forward can

never happen. This is because Pnew
1 would never send application-

purpose messages to Pold
1 . Accordingly, the process state of Pold

1

will not become potentially contaminated unless it receives a mes-
sage sent by P2 when the process state of P2 is potentially contam-
inated, which results in Scenario 1.

After the rollback action or the roll-forward decision, Pold
1 will

compare the value of msg count with VRnew1 . Depending upon
whether the former is greater or less than the latter, Pold

1 will send
out the messages (with sequence numbers greater than the value
of VRnew1 ) in the message log or further suppress its messages,
respectively, until the values of msg count and VRnew1 match.

5



if (dirty_bit == 1) {
rollback(most_recent_ckpt);
}
// switch role with Pnew1 and go forward
switch_to_active(VRnew1 , msg_count);
continue;

Figure 6: Error Recovery Algorithm for Pold
1

if (dirty_bit == 1) {
rollback(most_recent_ckpt);
}
// go forward
continue;

Figure 7: Error Recovery Algorithm for P2

4 Discussion

Clearly, our error containment and recovery algorithms are
based on the integration and adaptation of a number of exist-
ing enabling techniques. For example, we employ multiple soft-
ware versions (which are inherently available to us) and accep-
tance tests as suggested by N-version programming (NVP) [11]
and recovery blocks (RB) [12], respectively. But rather than be-
ing driven by program structure as suggested by these traditional
software fault tolerance techniques, checkpoint establishment and
acceptance test in our error containment algorithms are triggered
by message passing events, which is a strategy adapted from the
checkpointing techniques for hardware error recovery [13]. How-
ever, checkpointing techniques for hardware error recovery are
concerned solely with the consistency between process states for
assuring correct recovery from hardware faults. In contrast, since
our objective is to mitigate the effect of residual faults in an up-
graded software component, our concern is the consistency among
the views of different processes on process state integrity, espe-
cially on the valid messages (see Sections 3.1 and 3.2) reflected
in the process states. Thus, the notion of “confidence-driven” is
again the key to our adaptation of enabling techniques.

Specifically, we adapt the terminologies and definitions in
[13, 14] as follows: A global state includes the state of each pro-
cess that is executing the application, and possibly messages be-
tween interacting processes and information concerning their ver-
ified correctness. A valid checkpointing mechanism must assure
that it is always possible for the error recovery mechanism to bring
the system into a global state that satisfies the following two prop-
erties:

Consistency If m is reflected in the global state as a valid mes-
sage received by a process, then m must also be reflected in
the global state as a valid message sent by the sender process.

Recoverability If m is reflected in the global state as a valid mes-
sage sent by a process, then m must also be reflected in the
global state as a valid message received by the receiving pro-
cess(es) or the error recovery algorithm must be able to re-
store the message m.

When two or more process states (or checkpoints reflecting the
process states) comprise a global state that satisfies the consistency
property, we say that these process states are globally consistent,

or that they comprise a consistent global state. It is worth noting
that upon error recovery, Pold

1 takes over Pnew
1 ’s active role and thus

becomes the “sender process” of the messages sent by Pnew
1 and re-

flected as valid messages in the global state. Before we proceed to
explain why correct recovery can be achieved by the above algo-
rithms, we introduce the following checkpoint classification based
on the checkpointing rule described in Section 3.2:

Type-1 checkpoint: The checkpoint that is established, by a pro-
cess that is otherwise considered not potentially contami-
nated, upon its receipt of a message from a process whose
state is potentially contaminated.

Type-2 checkpoint: The checkpoint that is established, by a pro-
cess that is otherwise considered potentially contaminated,
upon its passing an AT or receiving a “Passed AT” notifica-
tion message.

Theorem 1 and Corollaries 1 and 2 (presented below) show that
the recovery decisions (rollback or roll-forward) made locally by
the individual processes satisfy the global state consistency prop-
erty. As the error containment algorithms require a potentially
contaminated process to perform AT for its outgoing external mes-
sage and to keep other processes informed of successful exter-
nal message sending, the information regarding external message
passing reflected in a global state will never violate global state
consistency. Therefore, the following theorem proofs are con-
cerned solely with internal messages.

Theorem 1 The most recent checkpoints of Pold
1 and P2 are al-

ways globally consistent.

Proof. Per the necessary and sufficient condition used by our algo-
rithms for checkpoint establishment (see Section 3.2), the process
states of Pold

1 and P2 reflected in their most recent checkpoints are
never potentially contaminated. If mi (i is the sequence number)
is reflected in the most recent checkpoint of P2 as a valid mes-
sage from Pnew

1 , then a successful AT must have been performed
(by Pnew

1 or P2) after the receipt of mi. Upon receiving the corre-
sponding “Passed AT” message (from Pnew

1 or P2), Pold
1 will update

its valid message register VRnew1 using the information attached to
the notification message and establish a checkpoint. Therefore,
mi must also be reflected in the most recent checkpoint of Pold

1 as
a valid message sent to P2 (by Pnew

1 ).
Conversely, if a message mj is reflected in the most recent

checkpoint of Pold
1 as a valid message received from P2, mj must

be sent by P2 when its process state is not potentially contami-
nated. Then if the most recent checkpoint of Pold

1 is Type-1, this
checkpoint must be established upon the receipt of a message mk

(k > j) sent by P2 when its process state is potentially contami-
nated. It follows that P2 must have established a checkpoint upon
receiving a message from Pnew

1 after sending mj but before send-
ing mk. Hence, mj will be reflected in the most recent checkpoint
of P2 as a valid message that has been sent. On the other hand, if
the most recent checkpoint of Pold

1 (in which mj is reflected as a
valid message from P2) is Type-2, this checkpoint must be estab-
lished upon the receipt of a “Passed AT” notification message from
Pnew
1 or P2. Per our error containment algorithms, the successful

AT will also trigger P2 to establish a checkpoint in which mj is
reflected as a valid message that has been sent. Then, the theorem
follows from the definition of global state consistency. Q.E.D.

6



Corollary 1 The process states of Pold
1 and P2 at time t that are

not potentially contaminated are globally consistent.

Proof. If Pold
1 and P2 are not involved in any interprocess commu-

nication since their most recent checkpoints, the information about
message sending and receiving reflected in the process states of the
two processes at time t will remain the same as those reflected in
their most recent checkpoints. Then the corollary follows from
Theorem 1.

If Pold
1 and P2 are involved in interprocess communication since

their most recent checkpoints, then the interprocess communica-
tion will not involve any messages from Pnew

1 because the process
states of Pold

1 and P2 at time t are not potentially contaminated.
More precisely, the interprocess communication will involve only
the message(s) sent by P2 to Pnew

1 and Pold
1 . These messages are

implicitly considered as valid messages sent and received by P2
and Pold

1 , respectively, because the dirty bit of each of the pro-
cesses (which are not potentially contaminated) must remain zero
since its most recent checkpoint. Then, the corollary follows from
the definition of global state consistency. Q.E.D.

Corollary 2 If at time t the process state of P2 is potentially con-
taminated but that of Pold

1 is not, then the process state of Pold
1

at time t and the process state of P2 reflected in its most recent
checkpoint (relative to t) are globally consistent.

Proof. If at time t the process state of P2 is potentially contami-
nated, then the most recent checkpoint (relative to t) of P2 must be
Type-1. Because the process states of P2 and Pold

1 immediately
before P2 establishes the Type-1 checkpoint are not potentially
contaminated, they are globally consistent per Corollary 1. If a
message mi is reflected in the process state of Pold

1 at time t as a
valid received message from P2, mi must also be reflected in the
most recent checkpoint of P2 as a valid outgoing message (sent to
Pold
1 and Pnew

1 ). This is because mi must be sent by P2 before it
establishes its most recent checkpoint; otherwise the process state
of Pold

1 at time t would have been potentially contaminated, which
is a contradiction. Conversely, if the most recent checkpoint of P2
reflects a valid message mj that is received from Pnew

1 , then mj

must be reflected (through the value of VRnew1 ) in the process state
of Pold

1 at time t as a valid message sent by Pnew
1 . This is because

mj must have been validated by AT (performed by P2 or Pnew
1 )

right before the establishment of an earlier (Type-2) checkpoint of
P2; also, after the successful AT, Pold

1 must receive the sequence
number of the last validated message of Pnew

1 that is attached to
the corresponding notification message, and update its VRnew1 ac-
cordingly. Hence, the corollary. Q.E.D.

Recoverability is assured by 1) the confidence-driven “rollback
or roll-forward” decisions by Pold

1 and P2, and 2) the message log
of Pold

1 , and the two key entities, namely, msg count and VRnew1 .
Recall that our algorithms yield the following system behavior: i)
upon a successful AT performed by Pnew

1 or P2, Pold
1 will update

its valid message register VRnew1 (using the information attached
to the notification message), and subsequently establish a check-
point; and ii) during error recovery, a process will at most rollback
to its most recent checkpoint. Accordingly, the value of VRnew1

identifies the valid messages which are sent by Pnew
1 and “perma-

nently received” by another process or an external subsystem (i.e.,
they will never be “unreceived” through rollback recovery). On
the other hand, msg count of Pold

1 may be decremented or re-
main the same after recovery, depending upon whether Pold

1 has to
roll back. As explained earlier, Pold

1 will “re-send” the messages
in its message log or suppress the messages it intends to send after
recovery, if the value of msg count is greater or less than that
of VRnew1 , respectively, until the two values match. Therefore, our
algorithms guarantee recoverability.

In addition to the correctness verification of the algorithms, we
have also carried out a model-based study to assess the perfor-
mance cost of the protocol quantitatively [15]. Specifically, in
terms of mean rollback distance and task completion time, the
model-based study contrasts the performance cost of our proto-
col to that resulting from the traditional software fault tolerance
techniques which involve process coordination and pre-structured
checkpointing and rollback actions. The quantitative results show
that our protocol leads to significant performance cost reduction
due to the dynamic nature of its error detection, containment,
and rollback/roll-forward recovery mechanisms. Because of space
limitations, we omit the detailed discussion.

It is also important to validate the low-cost protocol’s ability
to enhance reliability for onboard software upgrading. Recall that
the derivation of our protocol is based on three basic assumptions,
namely, A1, A2, and A3 (Section 3.1). These assumptions are con-
sistent with those related hypotheses made and used by researchers
and practitioners in the areas of software engineering, software
fault tolerance, and distributed systems. Nonetheless, in order to
validate the effectiveness of the protocol with respect to the reli-
ability improvement it provides us with under realistic, non-ideal
conditions, we have conducted probabilistic modeling using the
parameter values that are appreciably less than perfect with regard
to the assumptions [16]. The quantitative results confirm that the
message-driven confidence-driven approach is indeed effective.

5 Concluding Remarks

With the goal of avoiding or minimizing mission performance
degradation due to system failure caused by residual faults in an
upgraded software component, we have proposed a low-cost error
containment and recovery protocol. This effort makes two impor-
tant contributions. First, in order to mitigate the effect of resid-
ual faults in an upgraded software component, we introduce the
notion of “confidence-driven,” which complements the message-
driven approach employed by a number of existing checkpointing
protocols for tolerating hardware faults. In particular, we discrim-
inate between the individual software components with respect to
our confidence in their reliability, and keep track of changes of our
confidence (due to knowledge about potential process state con-
tamination caused by errors in the low-confidence component and
message passing) in particular processes. As a result, the com-
bined message-driven confidence-driven approach eliminates the
needs for 1) process coordination or atomic action, and 2) pre-
structuring checkpoint establishment and recovery actions in the
application programs. In other words, the confidence-driven na-
ture of the protocol permits the decisions on whether to take a
checkpoint upon message passing and whether to roll back or

7



roll forward during recovery to be made locally by individual
processes, facilitating cost-effective checkpointing and cascading-
rollback free error recovery.

Second, this effort demonstrates the appropriateness of utiliz-
ing the pertinent features of a target system and application in de-
vising error containment and recovery methods, for the objective
of reducing development and performance costs. With regard to
the application addressed in this paper, the following pertinent fea-
tures have enabled us to pursue a low-cost approach: 1) inherent
system resource redundancies are available, 2) software upgrade
is done in an incremental fashion, 3) internal and external mes-
sages have differing criticalities to the mission, and 4) among the
interacting processes in the distributed system, a subset of them
deserves our high confidence.

Furthermore, the error containment and recovery methods de-
scribed in this paper can be rather easily extended and generalized.
In particular, we plan to extend and apply the methodology to gen-
eral distributed systems in which we can discriminate between in-
teracting software components with respect to their reliability. In-
deed, a number of factors other than upgrading may result in dif-
fering levels of confidence in different software components in a
system. For example, we may have better confidence in a software
component with lower complexity or higher testability. Software
components in a distributed application may thus be categorized
into two groups according to our confidence in their reliability. In
a manner analogous to the GSU methodology, the high-confidence
group can be exploited to enhance the efficiency of error contain-
ment and recovery. Specifically, if the size of the low-confidence
group m remains 1 (only one low-confidence software component
among the cooperating application software components), the er-
ror containment algorithm for P2 described in Section 3.2 can be
adapted with only minor modifications, such that P2 and the ad-
ditional application software components P3, . . . , Pn can apply
the same modified algorithm. The modified algorithm will also be
applicable to the case in which we have multiple low-confidence
software components (m > 1) if we treat these components as a
single group during error recovery. On the other hand, for more
efficient onboard guarded software upgrading, it is desirable, upon
error detection, to isolate and configure out the faulty software
component from the low-confidence group. To realize this requires
further modifications to the error containment algorithms and the
addition of a diagnosis procedure for fault isolation. One way is to
use the “colored dirty bits,” which would enable us to distinguish
between different sources of process state contamination and to
preserve the simplicity and low performance cost of the protocol.

It is also worth noting that the dynamic nature of the proto-
col allows the error containment and recovery mechanisms to be
transparent to the programmer and facilitates a middleware imple-
mentation. Currently, we are prototyping the protocol in a middle-
ware architecture that implements the GSU methodology. After
the prototyping effort, performance and reliability benchmarking
will be conducted through fault injection; the results will be used
to further analyze and improve the algorithms and methodology.

References

[1] L. Alkalai and A. T. Tai, “Long-life deep-space applica-
tions,” IEEE Computer, vol. 31, pp. 37–38, Apr. 1998.

[2] A. Avižienis, “Towards systematic design of fault-tolerant
systems,” IEEE Computer, vol. 30, pp. 51–58, Apr. 1997.

[3] J. Rendleman, “MCI WorldCom blames Lucent software for
outage,” in PC Week, Ziff-Davis, August 16, 1999.

[4] L. Sha, J. B. Goodenough, and B. Pollak, “Simplex archi-
tecture: Meeting the challenges of using COTS in high-
reliability systems,” CrossTalk: The Journal of Defense Soft-
ware Engineering, vol. 11, Apr. 1998.

[5] D. Powell et al., “GUARDS: A generic upgradable architec-
ture for real-time dependable systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 10, pp. 580–599, June 1999.

[6] M. E. Segal and O. Frieder, “On-the-fly program modi-
fication: Systems for dynamic updating,” IEEE Software,
vol. 10, pp. 53–65, Mar. 1993.

[7] J. A. Abraham, “The myth of fault tolerance in complex sys-
tems,” in Proceedings of Pacific Rim International Sympo-
sium on Dependable Computing, (Hong Kong, China), Dec.
1999.

[8] A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and W. H.
Sanders, “On-board guarded software upgrading for space
missions,” in Proceedings of the 18th Digital Avionics Sys-
tems Conference, vol. 2, (St. Louis, MO), pp. 7.B.4–1–
7.B.4–8, Oct. 1999.

[9] S. N. Chau, L. Alkalai, A. T. Tai, and J. B. Burt, “Design of
a fault-tolerant COTS-based bus architecture,” IEEE Trans.
Reliability, vol. 48, pp. 351–359, Dec. 1999.

[10] C. T. Baker, “Effects of field service on software reliabil-
ity,” IEEE Trans. Software Engineering, vol. 14, pp. 254–
258, Feb. 1988.

[11] A. Avižienis, “The N-Version approach to fault-tolerant
software,” IEEE Trans. Software Engineering, vol. SE-11,
pp. 1491–1501, Dec. 1985.

[12] B. Randell, “System structure for software fault tolerance,”
IEEE Trans. Software Engineering, vol. SE-1, pp. 220–232,
June 1975.

[13] E. N. Elnozahy, D. B. Johnson, and Y.-M. Wang, “A sur-
vey of rollback-recovery protocols in message-passing sys-
tems,” Technical Report CMU-CS-96-181, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA,
Oct. 1996.

[14] N. Neves and W. K. Fuchs, “Coordinated checkpointing
without direct coordination,” in Proceedings of the 3rd
IEEE International Computer Performance and Dependabil-
ity Symposium, (Durham, NC), pp. 23–31, Sept. 1998.

[15] A. T. Tai and K. S. Tso, “Verification and validation of the
algorithms for guarded software upgrading,” Phase-II In-
terim Technical Progress Report for Contract NAS3-99125,
IA Tech, Inc., Los Angeles, CA, Sept. 1999.

[16] A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and
W. H. Sanders, “On the effectiveness of a message-driven
confidence-driven protocol for guarded software upgrading,”
in Proceedings of the 4th IEEE International Computer
Performance and Dependability Symposium (IPDS 2000),
(Schaumburg, IL), Mar. 2000.

8


