Available at

www.ElsevierComputerScience.com pERFORMAN‘E
EVALUATION

POWERED BY SCIENCE @DIRECTG

58

ELSEVIER Performance Evaluation 56 (2004) 249-276

www.elsevier.com/locate/peva

Performability analysis of guarded-operation duration:
a translation approach for reward model solutions

Ann T. Tai®*, William H. Sanderé!, Leon Alkalaic?,
Savio N. Cha§?, Kam S. Ts@-3
a1A Tech, Inc., 10501 Kinnard Avenue, Los Angeles, CA 90024, USA

b University of lllinois, Urbana, IL 61801, USA
¢ Jet Propulsion Laboratory, Pasadena, CA 91109, USA

Abstract

Performability measures are often defined for analyzing the worth of fault-tolerant systems whose performance is grace-
fully degradable. Accordingly, performability evaluation is inherently well suited for application of reward model solution
techniques. On the other hand, the complexity of performability evaluation for solving engineering problems may prevent us
from utilizing those techniques directly, suggesting the need for approaches that would enable us to exploit reward model
solution techniques through problem transformation. In this paper, we present a performability modeling effort that analyzes
the guarded-operation duration for onboard software upgrading. More specifically, we define a “performabilityitakex”
guantifies the extent to which the guarded operation with a durati@aduces the expected total performance degradation.

In order to solve forY, we progressively translate its formulation until it becomes an aggregate of constituent measures
conducive to efficient reward model solutions. Based on the reward-mapping-enabled intermediate model, we specify reward
structures in the composite base model which is built on three stochastic activity network reward models. We describe the
model-translation approach and show its feasibility for design-oriented performability modeling.

© 2003 Elsevier B.V. All rights reserved.

Keywords:Performability; Reduction of total performance degradation; Duration of guarded operation; Reward model
solutions; Model translation; Stochastic activity networks

1. Introduction

In order to protect an evolvable, distributed embedded system for long-life missions against the
adverse effects of design faults introduced by an onboard software upgrade, a methodology called

* Corresponding author. Tek:1-310-474-3568; fax+1-310-474-3608.
E-mail addressesa.t.tai@ieee.org (A.T. Tai), whs@crhc.uiuc.edu (W.H. Sanders), lalkalai@jpl.nasa.gov (L. Alkalai),
schau@jpl.nasa.gov (S.N. Chau), k.tso@ieee.org (K.S. Tso0).

! Tel.: 4+1-217-333-0345.

2 Tel.: +1-818-354-3309.

3 Tel.: +1-310-474-3568.

0166-5316/$ — see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-5316(03)00138-X

250 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

guarded software upgradin@GSU) has been develop§t-3]. The GSU methodology is supported by

a message-driven confidence-driven (MDCD) protocol that enables effective and efficient use of check-
pointing and acceptance test techniques for error containment and recovery. More specifically, the MDCD
protocol is responsible for ensuring that the system functions properly after a software component is re-
placed by an updated version during a mission, while allowing the updated component to interact freely
with other components in the system. The period during which the system is under the escort of the
MDCD protocol is called “guarded operation”.

Guarded operation thus permits an upgraded software component to start its service to the missior
in a seamless fashion, and, if the escorting process determines that the upgraded component is nc
sufficiently reliable and thus imposes an unacceptable risk to the mission, ensures that the system will
be safely downgraded back by replacing the upgraded software component with an earlier version. It
is anticipated that sensible use of this escorting process will minimize the expected total performance
degradation, which comprises: (1) the performance penalty due to design-fault-caused failure, and (2) the
performance reduction due to the overhead of the safeguard activities. Accordingly, an important design
parameter is the duration of the guarded operatipas the total performance degradation is directly
influenced by the length of the escorting process. In turn, this suggests that a performability §lalysis
is pertinent to the engineering decision-making.

Performability modeling often implies the need to consider a broad spectrum of system attributes
simultaneously and assess their collective effect on the benefit from the system or the worth of a mission
the system intends to accomplish. Accordingly, performability evaluation is inherently well suited for the
applications of: (1) reward model solution techniques [Se8] for example), (2) methods for hierarchical
or hybrid composition (sef®,10] for example), and behavioral decomposition (dge12]for example),
and (3) tools that implement those modeling techniques[s&é4] for example). On the other hand,
the complexity of performability measures for analyzing engineering problems and the dependencies
among the system attributes or subsystems that are subject to a joint consideration may prevent u:
from exploiting those techniques in a straightforward fashion. Hence, performability analysis with the
motivation described in the preceding paragraph presents us with greater challenges than the separa
dependability and performance studies for GSU we conducted dax[gr

To address the challenges, we propose a model-translation approach that enables us to exploit rewar
model solution techniques which we would otherwise be unable to utilize. Rather than attempt to map
the performability measure directly to a single reward structure in a monolithic model, we transform the
problem of solving a complex performability measure into that of evaluating several constituent reward
variables, each of which can be easily mapped to a reward structure and thereby evaluated efficiently
using any software tool that supports reward model solutions.

In particular, we first define a “performability indeX’, that quantifies the extent to which the guarded
operation with a duratiog reduces the expected total performance degradation, relative to the case in
which guarded operation is completely absent. For clarity and simplicity of the design-oriented model,
we allow Y to be formulated at a high level of abstraction. In order to solveYfcfficiently, we
choose not to elaborate its formulation directly or expand the design-oriented model into a monolithic,
state-space based model. Instead, we translate the model progressively, through analytic manipulatior
into an evaluation-oriented form that is an aggregate of constituent measures conducive to reward mode
solutions. Based on this intermediate, reward-mapping-enabled model, we take the final step to specify
reward structures in the composite base model, which is built on three measure-adaptive stochastic activity
network (SAN)[15] reward models.

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 251

As with behavioral decomposition methods and hierarchical composition techniques, our model-
translation approach permits us to avoid dealing with a model that is too complex to allow direct derivation
of a closed-form solution. Whereas the most important relationship between those previously developed
techniques and our approach is that successive model translation is intended to enable the application
of techniques for reward model solutions, behavioral decomposition, and hierarchical/hybrid composi-
tion to performability modeling problems in which: (1) clear boundaries among “subsystems” or system
properties could not be perceived from the viewpoint of the original problem formulation, or (2) the
mathematical implications (to the performability measure) of system behavior may not become apparent
until we elaborate the formulation of the problem to a certain degree. More generally, the process of
transforming the problem of solving a complex performability measure into that of evaluating constituent
reward variables naturally enables us to utilize those existing, efficient modeling techniques and tools
that we would be unable to exploit without model translation, widening the scope of their applicability.

The next section provides an overview of the GSU methodology and a description of guarded operation.
Section 3defines and formulates the performability meas@extion 4explains the translation process
in detail, followed bySection Swhich shows how the reward structures are specified in the SAN models.
Section Goresents an analysis of optimal guarded-operation duration. The paper is concl8detion 7
which summaries what we have accomplished.

2. Review of guarded software upgrading

The development of the GSU methodology was motivated by the challenge of guarding an embedded
system against the adverse effects of design faults introduced by onboard software ufiggjdese
performability study presented in this paper assumes that the underlying embedded system consists of
three computing nodes. (This assumption is consistent with the current architecture of the Future Deliveries
Testbed at JPE) Since a software upgrade is normally conducted during a non-critical mission phase
when the spacecraft and science functions do not require full computation power, only two processes,
corresponding to two different application software components, are supposed to run concurrently and
interact with each other. To exploit inherent system resource redundancies, we let the old version, in
which we have high confidence due to its sufficiently long onboard execution time, escort the new-version
software component through two stages of GSU, nanoelypard validatiorandguarded operationas
illustrated inFig. 1

Further, we make use of the third processor, which would otherwise be idle during a non-critical mission
phase, to accommodate the old version such that the three processes (i.e., the two corresponding to the
new and old versions, and the process corresponding to the second application software component) car
be executed concurrently. To aid in the description, we introduce the following notation:

pPrev The process corresponding to the new version of an application software component.

P‘l’Id The process corresponding to the old version of the application software component.

P, The process corresponding to another application software component (which is not
undergoing upgrade).

4 More recently, we have extended the error containment and recovery algorithms so that the methodology can serve a more
general class of distributed embedded systgép

252 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

old } (Servicing mission) } (Shadow-mode execution) })
Version 1IN ! (Retired)

New (Extended testing) (Servicing mission)

|
|
|
|
|
Version |

(Uploaded)

Normal mode

Normal mode Onboard validation

Guarded operation
> ? -9

—
|
L)
Onboard upgrade begins Next onboard upgradeJ

Fig. 1. Onboard guarded software upgrading.

The first stage of GSU (i.e., onboard validation), which can be viewed as extended testing in an actual
space environment, starts right after the new version is uploaded to the spacecraft. During this stage
the outgoing messages of the shadow procg8$ &e suppressed but selectively logged, whijé"P
receives the same incoming messages that the active prof¢sio@s. Thus, PP and P can per-

form the same computation based on identical input data. By maintaining an onboard error log that
can be downloaded to the ground for validation-results monitoring and Bayesian-statistics reliability
analyses (as suggested by some prior work in the research literaturd,7$der example), we can

make decisions regarding how long onboard validation should continue and whétfieraR be al-

lowed to enter mission operation. Moreover, onboard extended testing leads to a better estimation of the
fault-manifestation rate of the upgraded software. If onboard validation concludes successfull§’then P
and P switch their roles to enter the guarded operation stage. The time to the next upgsatiger-

mined upon the completion of onboard validation, according to: (1) the planned duty of the flight software
in the forthcoming mission phases, and (2) the quality of the flight software learned through onboard
validation.

During guarded operation,;® actually influences the external world and interacts with process P
under the escort of the MDCD error containment and recovery protocol, while the messag'é:thzftP
convey its computation results tg Br external systems (e.g., devices and actuators) are suppressed. We
call the messages sent by processes to external systems and the messages betweeneptenesises
messageandinternal messagesespectively.

Because the objective of the MDCD protocol is to mitigate the effect of residual software design
faults, we must ensure consistency among different processes’ views on verified correctness (validity) of
process states and messages. Accordingly, the MDCD algorithms aim to ensure that the error recoven
mechanisms can bring the system into a global state that satisfies validity-concerned global state consis
tency and recoverability. The key assumption used in the derivation of the MDCD algorithms is that an
erroneous state of a process is likely to affect the correctness of its outgoing messages, while an erro
neous message received by an application software component will result in process state contaminatiol
[2]. Accordingly, the necessary and sufficient condition for a process to establish a checkpoint is that
the process receives a message that will make the process’s otherwise non-contaminated state becor
potentially contaminated. In order to keep performance overhead low, the correctness validation mecha-
nism,acceptance tegAT), is only used to validate external messages from the active processes that are
potentially contaminated. By a “potentially contaminated process state”, we mean: (1) the process state

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 253

My
PQEW r 4 * T AT
m;q ‘\mlz | / Mi3 \\m14 N
pold ‘ e / | | g
' ‘\ I’ //ﬁ /‘ /4 “ \‘
| / |
Mpy, Ma2) Mag \
p, — =t N et 1
By Bi+1
M2y
. Message passing that
checkpoint — o
I P Interval during which process state triggers checkpointing
is potentially contaminated
L Message passing that does
Acceptance test > not trigger checkpointing

Fig. 2. MDCD protocol for guarded operation.

of P{*"which is created from a low-confidence software component, or (2) a process state that reflects
the receipt of a not-yet-validated message that is sent by a process when its process state is potentially
contaminated.

Fig. 2illustrates the behavior of the MDCD protocol. The horizontal lines in the figure represent the
software executions along the time horizon. Each of the shaded regions represents an execution interval
during which the state of the corresponding process is potentially contaminated. Symgjleas M.
denote, respectively, thigh internal message arith external message sent by process P

Upon the detection of an erroneous external mess@b’ewm take over B®"s active role and prepare
to resume normal computation with.mBy locally checking its knowledge about whether its process
state is contaminated, a process will decide to roll back or roll forward, respectively. After a rollback
or roll-forward action, ﬁ'd will “re-send” the messages in its message log or further suppress messages
it intends to send, based on the knowledge about the validity)¥fPmessages. After error recovery
(which marks an unsuccessful but safe onboard upgrade), the system goes back to the normal mode
(under which safeguard functions, namely, checkpointing and AT, are no longer performed) until the next
scheduled upgrade. An undetected, erroneous external messfgesult in system failure, meaning
that the system will become unable to continue proper mission operation. On the other hand, as the MDCD
algorithms allow very simple error recovel3], we anticipate that the system will recover from an error
successfully as long as the detection is successful.

If no error occurs during, then guarded operation concludes and the system goes back to the normal
mode (sed-ig. 1). Note that while the time to the next scheduled onboard upgéddechosen via a
software engineering decision, the duration of guarded operatisma design parameter that influences
system performance and dependability. The central purpose of this paper is to study how to evaluate a

performability measure for determining an optimaln the section that follows, we define and formulate
the performability measure.

5 For simplicity, in the remainder of the paper, we use the term “error” to refer to an erroneous external message.

254 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

3. Performability measure
3.1. Definition

We define a performability measure that will help us choose the appropriate duration of guarded
operation¢. More specifically,¢ will be determined based on the value of the performability mea-
sure that quantifies the expected total performance degradation reduction resulting from guarded
operation.

As mentioned irSection 1 we consider two types of performance degradation, namely

1. the performance degradation due to design-fault-caused failure, and
2. the performance degradation caused by the performance overhead of checkpoint establishment an
AT-based validation.

Clearly, a greater value af implies: (1) a decrease in the expected performance degradation due to
potential system failure caused by residual design faults in the upgraded software component, and (2]
an increase in the expected performance degradation due to the overhead of checkpointing and AT. W
let “mission worth” be quantified by the system time that is devoted to performing application tasks
rather than safeguard activities. If we I}, denote the amount of mission worth that is accrued through
6 when the duration of guarded operation (G-OP®,jghen W, refers to the total mission worth ac-
crued throughv for the boundary case in which the G-OP mode is completely absent (having a zero
duration). On the other extreme, if the system is perfectly reliable, then it would not require guarded
operation and would thus be free of either type of performance degradation described above. We view
this extreme case as the “ideal case” and let its total mission worth (accrued thpbghdenoted
by W,.

It is worthwhile noting that the difference between the expected valugs ahdW, can be regarded as
the expected mission worth reduction, or the expected total performance degradation (from the ideal case
that the system experiences througtvhen the G-OP duration ig. Similarly, the difference between
the expected values d¥, and W, represents the expected total performance degradation the system
experiences throughwhen the G-OP mode is absent through@ut follows that if E[W|] — E[Wy] <
E[W|] — E[Wy], theng can be considered a better choice tiharAccordingly, we let the performability
measure take the form oferformability indexy, that quantifies the extent to which a G-OP duration
¢ reduces the expected total performance degradation, relative to the case in which the G-OP mode i
completely absent. More succinctly,is the ratio of the difference betwedi] W] and E[W] to that
betweenE[W] and E[Wy]:

_ E[Wi] — E[Wd]

' = Ewl—Ew,)’

1)

Based on the above discussion, we can anticipate a performability benefit from a guarded operation tha
is characterized by a (non-zero) duratiprwhen E[W,] — E[W,] is less thanE[W] — E[Wo]. More
precisely,Y > 1 implies that the application of guarded operation will yield a performability benefit with
respect to the reduction of the expected total performance degradation. On the oth&r kahduggests

that guarded operation will not be effective for total performance degradation reduction. We formulate
E[W], E[Wy], and E[W,] in the next section.

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 255

3.2. Formulation

As explained above, we choose to quantify “mission worth” in terms of the system time devoted to
performing application tasks (rather than safeguard activities) that is accrued through missio® period
Further, the system behavior describe®gttion 2suggests that an error that propagates to an external
system will nullify the worth of that mission period. Since neither the ideal case nor the case in which
the G-OP mode is completely absent involves safeguard activitieand Wy can be formulated in a
straightforward fashion:

W, = 26, (2

26 if no error occurs througho#t
Wo = _ 3)
0 otherwise
Note that the coefficient 2 in the above equations reflects the fact that in the avionics system we consider,
only two application processes actively service the mission déxifigor the cases to whicl, and W,
correspond, the two processes will always B&'Rnd B.)

To help formulate an expression féf,, we group the possible behaviors (i.e., sample paths) that the
system may exhibit into several categories. In particular, since we do not make the assumpti@'ﬁ that P
and B are perfectly reliable and AT has a full coverage, we must consider situations where the system fails
during guarded operation, or fails after error recovery. This leads us to define three classes of sample paths:
(i) those (called S1 below) in which no error occurs, and the system thus goes through the upgrade process
successfully, (ii) those (called S2 below) in which an error occurs dyfjragnd the system successfully
recovers, and (iii) those involving the occurrence of an error from which the system cannot recover. (Since
no mission worth is accumulated for sample paths of the third category, they are not considered in the
expressions of mission worth.) More specifically, we define sets of sample paths S1 and S2 as follows:

(S1) No error occurs by the end f so the system enters the normal mode witff'nd B in mission
operation aftep; the upgraded system subsequently goes through the périe@) successfully.

(S2) An error occurs and is detected B§f'Por P, atr, 0 < © < ¢, so that error recovery brings the
system into the normal mode witff'lband R in mission operation after; the recovered system
subsequently goes through-¢ t) successfully.

We letp, 1 andp, > denote the fractions of time during whiclf®and B, respectively, are making forward
progress (rather than performing safeguard functions), given that the system is under the G-OP mode
until ¢ (1 < ¢). W4 can then be defined as follows:

(0g,1 + Pp.2)P + 20 — @) if system experiences a sample pathin S1
Wy = v((pr1+ pr2)T + 2(0 — 1)) if System experiences a sample path in S2 (4)
0 otherwise

where the coefficient (0 < y < 1) is thediscount factotthat takes into account the additional mission
worth reduction for an unsuccessful but safe onboard software upgrade, relative to the case in which the
upgrade succeeds. We can definaccording to the implication of S2 for the system in question. For
clarity of illustration, we will postpone our description of how we definantil Section 6 in which we

present the evaluation experiments and results.

256 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

3.3. High-level elaboration of expressions

In order to solve foi¥’, we first elaborate its formulation at a high level of abstraction. It is clear that
E[W] = 26. Thus we proceed to elaborai W], the expected value of mission worth when G-OP
duration is zero. It is worth noting that wheén= 0, the sample-path set S2 becomes degenerate while S1
is reduced to a “boundary-case version” that enumerates the system behaviors belonging to the categor
“no error occurs throughowwhen the G-OP mode is completely absent duéthd hen, fromEq. (3),
which implies that mission worth will be@2if the system takes a sample path in this boundary-case
version of S1, it follows that

E[Wo] = 20P(S1, wheng = 0). (5)
Based orEqg. (4)and the theorem of total expectation, we derive the following expressiaf #7]:
E[Wy] = Y1+ Y72, (6)
where
Y3t = E[(0p.1+ pp.2)¢ + 2(6 —)] P(S1 wheng > 0)
= ((pp.1+ pp.2)¢ + 2(0 — $)) P(S1, wheng > 0). (7)

We notice that the application-purpose message-passing events that trigger checkpointing and AT (whict
dominate the performance overhead) are significantly more frequent than the fault-manifestation events
Moreover, the mean time between message-passing events is only seconds in length, whereas areasona
value of¢ will be in the range of hundreds or thousands of hours. Hence, we can assume that the systen
reaches a steady state with respect to the performance-overhead related events before an error occurs ort
G-OP duration ends. Thus,; andp; » can be regarded as steady-state meagyrasdp,, respectively.
ConsequentlyEqg. (7)becomes

Yol = ((p1+ p2)¢ + 2(6 — $)) P(S1, wheng > 0). (8)

While the fact that all the sample paths in S1 (whdakes a particular value in [@]) will yield the same
mission worth leads to a simple expression)fgh the mission worth associated with the sample paths in
S2 are a function of, which is a random variable that can assume a continuum of values. This precludes
the possibility of deriving an expression fbfz that is in a form similar to that dEq. (8) Accordingly,

we postulate that there exists a closed-form solutiorYfprand elaborate it by defining two probability
density functions (pdf). More precisely, we letbe the pdf ofr, and letf denote the pdf of the time

to system failure that occurs after error recovery. jAs conditioned on the event that the system has
recovered from an error that is detected successfully @< T < ¢, Y,fz can be formulated as follows:

¢ 0
Yp?t= / (o1 + p2)T + 2(0 — D)h(7) (1— / f(x)dx> dr, ©)
0 T

where the ternfl — ff f(x) dx) is the probability that system failure does not occur in the interval from
error detection to the next onboard upgrade (during this inter‘}?%llalﬁd R are in mission operation),
given that an error is detected and recovereq @Qt< t < ¢.

We now arrive at a stage in whidhis formulated in not-yet-elaborated pdf. The decision of how to
proceed from there is important. We choose not to elaborate those pdf, narmetyf, because they

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 257

would have complex expressions and would thus make the solutiBn.dP) very difficult. Rather, in

order to take advantage of reward model solution techniques and tools that support them, we prefer to let
those terms that remain at a high level of abstraction guide us in reward structure derivation. Nonetheless,
neitherEq. (8)nor Eq. (9) has been stated in a form that is ready to be mapped to reward structures in
a state-space based model. Accordingly, we seek to exploit reward model solution techniques through
model translation.

4. Trandation for reward model solutions

With the motivation described at the end of the previous section, we develop an approach that translates
the design-oriented model successively until it reaches a stage at which the final solitibecmimes a
simple function of “constituent measures”, each of which can be directly mapped to a reward structure.
Fig. 3illustrates the process of successive model translation. As shown by the diagram, translation
proceeds along two branches: one for solvE{dVo] and one for solvingt[W,] (which is expressed as
the sum ofY 3 andY3?). As indicated byEgs. (5), (8) and (9)solution derivations fol£[Wo] and ¥;*
will deal solely with probabilistic measures concerning the sample paths in S1, whereas the terms that
are involved ianf2 characterize the system behavior constituting S2. We describe the translation process

for solving E[Wy] and Y,fl in Section 4.1and devot&Section 4.20 the explanation of how we translate
Y2 step by step.

4.1. Translation based on sample-path analysis

Note that the high-level expressions that we have derived féiy] and E[W,] in Section 3.3ndeed
postulate a stochastic process with a sample-path space that covers S1 and S2. If we view the starting
point of G-OP as time zero (sé&g. 1), this stochastic process can be expresset as{X,|t € [0, 6]}.

Further, if we letA; denote the set of states afin which no error has occurred in the system, then
according to the definition of S1.:

P(S1 wheng = 0) = P(Xy4 € Ay, wheng = 0), (20)
P(S1, wheng > 0) = P(X, € A, wheng > 0). (11)

It is possible to specify a monolithic model to represent the stochastic pratisssolving P(X, €

A1, when¢ = 0) and P(X, € A1, wheng > 0), if we choose to use a model type that is highly
expressive, such as stochastic Petri nets or SANs. However, the complexity of the model would make it
impossible for us to achieve solution efficiency, even if the model was comprehensive enough to support
the measures. Specifically, in addition to the problem of state-space size, the fatistbaracterized by

a pre-designated G-OP duratigimplies the inclusion of a deterministic state transition which prevents

X from being Markovian.

On the other hand, singgis a crucial design parameter whose value determines the transition point
of system operation and is supposed to have a significant impact on performability, we can translate the
model by lettingyp be the cutoff point in breaking down each of the sample paths. More specifically, if
we letU|p 4 denote the sample-path set that enumerates the system’s behavior within the interval defined

258 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

Performability Index

E[Wo] E[W]=26 E[W,]
Yt Y§?
P(S1, when ¢ = 0) P(S1, when ¢ > 0) P P2 [3((pr#p2)t+2(0-1)h(x) (1-T F(x)dx)de
(in Eq.(5)) (in Eq. (8)) (in Egs. (8) & (9)) (in Eq. (9))

0 0
P(Vpe, When 9 =0) P(Uppg, when ¢>0) P(Vj,q, when ¢ >0) P P2 [of(x)dx I hqf‘f?nd‘c: [ot h(z)dr,
l l l [olth(@)f(x)dxdz
P(X(eAY) P(X;eA}) P(X ¢4 A7)

\/ \/
Reward Model Reward Model
RMgp RMgqg

\
Reward Model
RMpnq

Fig. 3. Successive model translation.

by the starting point of G-OP and the point corresponding to the pre-designated valubedU g 4 is
composed of three subsets:

77 b
Uo.gl = (Up.g Up.g1» Upp.ar)s
where the sample paths in the subsets cover the following categories of system behavior:

U[%,qb] The system goes through the entire length offl0successfully under the G-OP mode with
no error occurrence.

U[%’ 4l An error occurs and is detectedmafr < ¢); the recovery system goes throughg]
successfully under the normal mode.

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 259

Upa st Ve Upa
Upg = {Upa Upg = {Upg
Uiog X [Vi Uog
(@ (b)
Fig. 4. Composite sample paths.
U[‘é,,d)] An error occurs in0, ¢] but goes undetected, resulting in an immediate system failure,

or an error occurs and is detected gt < ¢), but the recovered system fails (under the
normal mode) in the intervdk, ¢] due to another error.

Similarly, we letV, 4 denote the sample-path set that enumerates the system’s behavior within the
interval defined by the point corresponding to the pre-designated valiiarado (the point for the next
upgrade). Thud/i,4 ¢ consists of two subsets:

Viga = Via Vipa)

where the sample paths in the subsets cover the following types of system behavior under the normal
mode (given that the system does not faild)y

V[;g] The system goes through the perigd §] successfully.
V[‘;w] The system fails duringf, 6] due to an error that occurs during that period.

Then, the sample-path space &f call it S, is a proper subset dfjp 4; x V[4.¢. More succinctly,
S C Up.g x Vipg, as illustrated irFig. 4(a). Note that all the composite sample paths indicated by the
dashed lines with arrows and the sample patklg%r]b imply the absorbing states &f. (Therefore, no
mission worth will be accumulated through those paths.)

The above analysis suggests that we can decompegiéh respect to the pre-designated valuepof
More precisely,X’ can be partitioned into two simpler stochastic proces&és= {X/|r € [0, ¢]} and
X" = {X!|t € [¢, 0]}. The former represents system behavior during the interval with a pre-designated
lengthe (¢ > 0, but the system may switch from the G-OP mode to normal mod®at t < ¢, due to
error recovery), while the latter represents system behaviordrtmihe point at which the next onboard
upgrade is supposed to begin, provided that the system does not fail duritjg [0

Accordingly,Upo 4, Which exhaustively enumerates all the possible system behaviors during the interval
[0, ¢], becomes the sample-path spacetdflikewise, Vi, ¢ is the sample-path space &f'.

Note that for the boundary case in whigh= 0, X’ becomes degenerate whit¥’ becomes the model
that represents the system behavior when G-OP is absent in the entire duratio#] ¢f.¢0, the case
upon whichWy is defined). Without losing generality, when= 0, V[?P’e] and V[fbﬁ] can be interpreted,
respectively, as the sets of sample paths representing the scenarios in which: (1) a completely unprotectec
system operates properly, and (2) an error causes the unprotected system to fail.

As revealed by the reliability study we conducted2h, when processes’ message-sending rates are
reasonably high, the likelihood that dormant error conditions will exist in a process state upon a successful

260 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

completion of G-OP or after error recovery is so low that the effect on system behavior is practically
negligible. This result implies that each process involved in mission operatipoaat be considered as
“clean” as it was at time zero. Thug, ,, andVf; ,, are approximately equivalent g ,_,; andV ;4.
respectively. In turn, this means th@t' = {X|r € [¢, 0]} can be treated a¥” = {X/|r € [0, 0 — ¢]}.
Further, ag € [0, 6], the maximum value of6 — ¢) will be 6. Consequently, this stochastic process can
be expressed a8” = {X/|t € [0,]}.

As a result of the decomposition, S1 and S2 can be expressed as the Cartesian products of a subs
from Upp 4; and a subset fromr o o_,. Specifically, as indicated iRig. 4(b), wheng > 0, each sample
path in S1 can be regarded as a path fm{ﬁb} concatenated with a path frovrf%ﬁf 41> but wheng = 0,
S1 simply equaIsV[%ﬁ]. More succinctly:

S1— Upg * Vioo—g 1f&>0,

a . (12)

Likewise
S2=Upy x Voo s if¢>0. (13)

Clearly, S2 becomes degeneraté i 0.

The translation-induced model decomposition enables us to soh&&dr, whenp = 0) and P(S1,
wheng > 0) in an efficient way. Specifically, if we led; and.A] denote, respectively, the sets of states
of X’ andX” in which no error has occurred in the system, tBeps. (10) and (11gan be translated into
a combined expression:

P(Xj, € A)P(Xy_, € A]) if¢>0,

P(Sl) = 1" " ;
P(X}) € A)) if ¢ = 0.

(14)

Consequently, each of those transient, instant-of-time measures, naB(n’égyg A, P(Xg_d, e A)),
and P(X; € AY), can be solved by defining a reward structure in one of the decomposed models.

As explained inSection 3.3 p; and p, can be treated as steady-state instant-of-time measures. This
suggests that we can take one step further in model decomposition by partitidrirtg two submodels,
namely, one (with absorbing states) that represents the dependability attrindtesmaf another (having
no absorbing states) that represents the performance aspéttsByf defining reward structures in the
latter and computing the expected reward at steady state, we will be able to eyalaatio,.

As indicated byFig. 3, based on the reward model solutions of constituent meaﬁ@ég e A)),
P(X;_, € AY), P(X} € AY), p1, andp, we will be able to evaluat&[W] and qu‘l in a straightforward
fashion. On the other hand, the model decomposition explained above is helpful but not enough for trans-
lating Yfz into a form that is conducive to a reward model solution, because as mentio8edtion 3.3
the mission worth associated with each sample path in S2 is a functigmbiich is a random variable
that can assume a continuum of values. Hence, we proceed to manipulate the double inEgréd)n
analytically, as described in detail in the next section.

4.2. Translation oﬁ/gz

The translation 01Y¢§2 aims to ensure that (1) its final form involves only simple, easily interpretable
constituent measures, and (2) none of the resulting constituent measures concerns system behavior goir

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 261

across the boundary poigt We begin with expanding the right hand sidekaf. (9)as follows:

¢ @ 6
vS? = (/0 (20— (2~ (p1 + p2))Dh (1) dir — /0 (20— 2~ (p1+ p2))Dh(D) f f(x)dxdr>.
(15)

If we then rearrange the first term in the parenthesd&&o{15) we have

¢ ¢ ¢
/O (20 — (2= (o1 + p2)) Dh(D) dt = 26 /O h(o) dr — 2= (o1 + p2) /0 th(7) dr. (16)

Note thatr has a mixture distribution. This is becauge) equals zero fot > ¢ and thuslim_, ,, H(t) <

1. Clearly,f(;’5 h(7) dr is the probability that an error occurs and is detected ishen the G-OP duration

is . However, as mentioned earlier, the complexity of the system behavior makes it very difficult to
deriveh and compute the integrals without an excessive amount of approximation. Therefore, we choose
not to elaboraté but let it guide us to reach reward model solutions. Specifically, per the interpretation
of fo‘Ph(r) dr, if we let A; denote the set of states (4f') in which an error has occurred and been

successfully detectegfo‘b h(t) dr can then be evaluated as the expected instant-of-time reward:
¢
/ h(7)dr = P(X} € Ajy). a7
0

In other words, with a state-space based madelve can solv%’5 h(7) dr by assigning a reward rate of

1 to all states ind; and a reward rate of zero to all other states, and computing the expected reward at
Recall that the system behavior implies that: (1) a state in which the system encounters an undetected

error is absorbing, and (2) a successful error detection will result in error recovery that brings the system

back to the normal mode, under which checkpointing and AT (the error detection mechanism) will no

longer be performed. Together with the fact thét) = 0 for r € (¢, 00), these in turn suggest that mean

time to error detection (measured from the starting point of G-ngﬁ(r) dr is a meaningful measure,

and can have a reward model solution. Accordingly, if wedgtlenote the set of states in which no error

has been detected, artj denote the set of (absorbing) states in which an error has occurred and caused

a system failure due to unsuccessful error detection (#jus a proper subset od;), we have

¢ ¢
/ th(7) dr = / (P(X, € Ay — P(X, € A)dh, (18)
0 0

which implies that to evaluatﬁ th(7t) dr, we can assign a reward rate of 1 to all statesX6fin A,
a reward rate of-1 to all states ind}, and a reward rate of zero to all other states, and then compute
the expected reward accumulated throggiThus, the integrals iEqg. (16)(and thus the minuend in
Eg. (15) can be solved.

We manipulate the subtrahendkHiq. (15)in a similar fashion and begin with rearranging the terms:

¢ 0
/0 (20 — (2= (p1+ p2)Dh(7) / fx) dxdr

¢ o ¢ 0 ¢ o

= 20/ / h(7) f(x) dxdr—(2—(,01+,02))/ / th(7) f(x) dxdt = 20/ f h(7) f(x) dx dz.
0 T 0 T 0 T

(19)

262 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

X TA
0 X=0,
7/
7/
//
[0} X=1 .
-
‘ >
0 (0] T

(@)
Fig. 5. Translating the area of integration.

We neglect the subtrahend in the above equation because the values of &othp, will normally (and
preferably) be close to unity, while the valuedoih the minuend in the same equation is supposed to be
in the range of 1000-10,000 h for the considered applications.

Note also that the expressigfgi f:} h(7) f(x) dx dr is the probability that an error occurs and is detected
when the system is under the G-OP mode but the system fails due to another error that occurs betwee
the successful recovery and the next upgrade. However, the area of integration (with respect to the time
x at which a recovered system fails) goes across the boundary between the pre-designated G-OP interv:
[0, ¢] and the interval ¢, 6] during which the system (that completes G-OP safely) continues mission
operation under the normal mode. That prevents us from obtaining a reward model solution based on the
decomposed model’ andX”. However, by closely inspecting the area of the integration, as shown in
Fig. 5a), we realize that we can change the coordinates of the integrals such that the orientation of the
integration area will be converted accordingly, as showhig 5b). In turn, the converted integration
area suggests that the resultaf. (19)can be broken down into two terms:

¢ o ¢ px 0 ¢
20 / / h(7) f(x) dx dr = 20 / / Ffx)h(z) dr dx + 20 / f(x) / h(7) dr dx. (20)
o J¢ o Jo o 0

The second summand iBqg. (20)can thus be expressed as the product of two probabilities, namely,
f(;b h(t)dt andf; f(x) dx (seeEq. (21). While we have already provided a reward model solution for
the former (sed=q. (17), we recognize that the latter is the probability that the recovered system will
fail due to the occurrence of another error at a time instanp @]l As explained inSection 4.1 we

can obtain a good approximation fyﬁéZ f(x) dx by defining a reward structure ii” and computing the
expected instant-of-time reward &t ¢).

On the other hand, the first summandBg. (20)is not yet in a form that can be interpreted in a
straightforward way. We therefore “change back” the coordinates for this individual constituent measure
so that its area of integration is translated from the darker region (with a triangular shajpe) Htb)
back to the darker region iRig. 5a). In turn, the subtrahend Eq. (15)finally becomes

¢ 0
/0 (20— (2= (o1 + p2) V(D) / fx) dr dr

¢ ro ¢ 0
~ 29/ / h(7) f(x)dxdr + 20 (/ h(7) dr) (/ f(x) dx) . (22)
0 Jr 0 ¢

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 263

Although the first summand in the above equation also involves a double integral, its area of integration
is bounded byp. In addition, this double integral can be given a straightforward interpretation, i.e., the
probability that an error is detected when the system is under the G-OP mode and the recovered system
fails by ¢ (under the normal mode) due to the occurrence of another error. A reward structure can then
be defined accordingly i&”’. To this end, we can evaluate each of the constituent measurléngby
mapping it to a reward structure A’ or X”. More succinctly, if we plug the results Bfys. (16) and (21)
into Eqg. (15) Yfz becomes ready to be solved using reward model solution techniques.

In summary, the translation process described thus far converts the terms at the design-oriented level
into the following solvable constituent reward variables (seekigo3):

o P(Xj €A, P(X), € A, andP(X;_, € AY).
® 01, 02.
o Joh(dr, [§th(Dde. [§ [¢h(D) f(x) dx dr, and [, f(x) dx.

It becomes apparent that we will be able to obtain the final solutidn ibfve construct the following
three reward models at the base-model level:

RMgq A reward model that represents the system behavior during the pre-designated G-OP
interval and supports dependability measures (i.e., a submodé&ladnstructed for solving
dependability measures).

RMgp A reward model that represents the system behavior under the G-OP mode and supports
performance-overhead measures (i.e., a submodEl obnstructed for solving
performance-overhead measures).

RMng A reward model that represents the system behavior under the normal mode.

Details about the mapping between the resulting constituent measures and the reward structures in
RMgd, RMgp, and RMyq are provided in the next section.

5. SAN reward model solutionsfor constituent measures

We use SANSs to realize the final step of model translation. This choice is based on the following
factors: (1) SANs have high-level language constructs that facilitate marking-dependent model specifi-
cations and representation of dependencies among system attributes, andJ{a@wNtool provides
convenient specification capabilities for defining reward structr@s and (3) by adopting and making
minor modifications to the SAN models we developed for our previous (separate) dependability and
performance-cost studig®,3], we will be able to use them as the reward modelsdgMRMg), and
RMpg. In the following sections, we briefly describe these SAN reward models and show the spec-
ifications of the SAN-based reward structures which lead to the final solution of the performability
measure.

5.1. SAN reward models

The rich syntax and marking-dependent specification capability of SANs allow us to specify every
aspect of the protocol precisely. However, we may encounter a state-space explosion or experience very

264 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

>—)

H P1NerrP1INCK
P1INfm

P10errP10ctmR10se iy ailure
P10fm Q

detected

>

P2rP10

2al

Fig. 6. SAN reward model Ri.

slow computation if we attempt to construct a monolithic model, or attempt to make a SAN model a
procedural specification of the MDCD protocol. To avoid those problems, we

1. use three separate reward models, each of which is specified for representing the dependability o
performance-overhead related aspectd’0br X", as explained irsection 4 and

2. minimize explicit representation of the algorithmic details, while ensuring that every aspect of their
impact on the particular measure we seek to solve (in a particular reward model) is captured.

The SAN reward model R}, shown inFig. 6, is a modified version of the model we built for studying
the dependability gain from the use of the MDCD protd&jl

In model construction, we avoid modeling details about checkpoint establishment, deletion, and roll-
back error recovery. Rather, by exploiting the relations among the markings of the places that represent

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 265

whether a process is actually error-contaminated and the process’s knowledge about its state contami-
nation, we are able to characterize the system’s failure behavior precisely with respect to whether mes-
sages sent by potentially contaminated processes will cause system failure. Consider the output gates
P1Nok_ext andP2ok_ext, which are connected, respectively, to the cases of the timed activities
P1Nmsg andP2ns g that represent successful external message sending. The output functions of these
two gates will reset the marking of the pladerty_bi t to zero, implying that the process states

of P, and Fg"d are considered non-contaminated after a message-passing event. These carefully speci-
fied cases and output gates play an important role in accurately and concisely representing the system
behavior in a non-ideal execution environment. In particular, by resettirg y _bi t (through the

output function ofP1Nok _ext or P2ok_ext) while leaving the markings d?1QOct n andP2ct n un-
changed, we are able to enumerate the following scenarios without introducing separate representations
for them:

1. A process that is considered potentially contaminated is actually not contaminated (by own-fault-
caused error or error propagation), and thus its external message results in a successful AT.

2. A process that is considered potentially contaminated is actually contaminated, but its error condi-
tion is not manifested in the external message, thus after that message passes AT, the process stat:
of P, or P9 that is considered potentially contaminated prior to the AT is wrongly judged non-
contaminated.

3. A process that is considered non-contaminated (and may or may not be actually contaminated) sends
a correct external message without undergoing AT.

A detailed description of how we extensively exploit marking-dependent specification to represent com-
plex system behavior in a compact model can be fourj@]inin order to represent explicitly whether an

error has been detected in the system, the pliateect ed is added to the SAN model. Thus, each of

the constituent measures that are related to the event of error detection, nﬁfmhy,dr, f(f’ th(7) dr,

and f0‘7’ ffh(r)f(x) dx dz, can be easily mapped to a reward structure. Note that since mean time to
error occurrence is at least several orders of magnitude greater than the average length of the interval
from the start of an AT execution to its completion, we use an instantaneous activity in the SAN reward
model RMsq4 (which is intended to support constituent measures concerning dependability) to represent
an AT-based validation, further reducing model complexity.

In contrast, in the SAN reward model Riyl(seeFig. 7), we omit those failure-behavior-related aspects,
such as fault manifestation, error propagation, and unsuccessful error def@Ltlostead, we focus on
representing the conditions that would require a process to take actions that do not belong to the category
of “forward progress” (e.g., the action to establish a checkpoint or perform an AT).

Since its purpose is to solve; and p,, the SAN reward model Ry}, includes the timed and in-
stantaneous activities that represent the error containment actions of the protocol that are driven by the
message-passing events and the dynamically adjusted confidence in processes, as Bigpwh Iim
particular, the placeB1oDB andP2DB represent the dirty bits of'iij and B, respectively. Each of those
places may have a marking of 0 or 1, which can be interpreted as the confidence in the corresponding
process. The timed and instantaneous activities together precisely represent how the MDCD checkpoint-
ing rule and AT-based validation policy are executed. For example, when activated, the timed activity
P2_CKPT indicates that Pis engaged in a checkpoint establishment, while the instantaneous activity
P2Ski pCKPT indicates that RPis exempted from checkpointing for a particular message-receiving event,
according to the MDCD checkpointing rule.

266 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

<

P1nRead

PloChec
. / Plo_CKPT
F P1oifSC)
‘ l, P1oSkipCKP

4
‘4 e

P2Ready P2_CKPT
: PN —{
p2sl P2int\ ifSki _ i
P poskipAT P2TSC boskipckPT

Fig. 7. SAN reward model R},

In addition, due to the nature of the measures it is intended to support, the SAN reward magiel RM
emphasizes the effects on system dependability of the interactions between the non-ideal environmen
conditions and the behavior of the MDCD protocol. Accordingly, in the model construction, we relax the
design assumptions for an ideal execution environment. In contrast, the purposggitRd/evaluate the
performance overhead resulting from processes’ error containment activities. Since those fault tolerance
mechanisms are directly influenced by the design assumptions, the ideal environment assumptions ar
preserved in this SAN reward model.

As shown inFig. 8 the SAN reward model RN} is rather simple and thus is not discussed here.
5.2. SAN reward structures

As a result of model translation, each of the constituent measures is ready to be mapped to a rewarc
structure. In addition, th<raSANtool provides us with a convenient way to define a reward structure

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 267

N
H I/
P1Nerr
P1Nfm

failure

P2cP1N

P2msg

Fig. 8. SAN reward model RN}.

by specifying a “predicate-rate” pdit3]. Below we describe how the reward structures are specified in
the SAN reward models presented in the previous section.

5.2.1. Solving constituent measures in M

Fig. 3shows that the constituent measufésh(r) dr, f(? th(7) dr, f0¢ /j’h(r)f(x) dx dr, and P(X; €

}) are supposed to be evaluated in the reward modeiRIVable 1summarizes how reward structures
are specified in predicate-rate pairs and how the expected reward values are computed for solving those
constituent measures. An explanation of those reward model solutions has been @eetian 4

5.2.2. Solving constituent measures in &M

As indicated inFig. 3, two constituent measures are supposed to be solved in the reward moglg! RM
namely,p; and p,. For simplicity and clarity of the specification of the predicate-rate pairs, we instead
solve for(1—p;) and(1— py), which are the performance-overhead measures'figdd B, respectively.
Table 2enumerates the reward type and predicate-rate pair for each of the two measures.

Note that the predicate-rate pair specified for(4;) involves more conditions. This is because, unlike
the process PP" which is always considered as potentially contaminated when the system is under the
G-OP mode, we dynamically adjust the confidencesami perform checkpointing and AT accordingly.

Table 1

Constituent measures and SAN reward structures igRM

Measure Reward type Predicate-rate pair

ffh(r) dr Expected instant-of-time reward @t MARK(det ect ed) ==1 && MARK(failure)== 1

/;f’ th(7) dt Expected accumulated interval-of-time MARK(det ect ed) == 1

reward for [Q ¢] MARK(det ect ed) ==0 && MARK(failure)==1 -1

fg’ /fh(r) Expected instant-of-time reward éit MARK(det ect ed) ==1 && MARK(failure)==1 1

f(x)dxdr

P(X, € Ay) Expected instant-of-time reward at MARK(det ect ed) ==0 && MARK(fail ure)== 1

268 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

Table 2

Constituent measures and SAN reward structures igRM

Measure Reward type Predicate-rate pair

1-p Expected instant-of-time MARK(P1nExt) == 1
reward at steady state

1—po Expected instant-of-time (MARK(P1nlnt) ==1 && MARK(P2DB) ==0) || 1
reward at steady state (MARK(P2Ext) ==1 && MARK(P2DB) ==1)

5.2.3. Solving constituent measures ingM

As indicated inFig. 3and explained irSection 4.1three constituent measures should be solved in the
reward model RMq (seeFig. 8), namely,P(X, € A)), P(Xj 4 € D, andfj f(x) dx.

To solveP(X} € A7) andP(X”_¢ e A7), we assign the fault-manifestation rate §f¥to the activity
that represents the fault-manifestation behavior of the first software component, and compute the expecte
reward values atand @ — ¢), respectively. As fojqf f(x) dx, since it can be interpreted as the probability
that the recovered system (consisting @LF’ Rnd R) fails during the interval [00 — ¢], we assign the
fault-manifestation rate of(l’Fd to the activity that represents the fault-manifestation behavior of the first
software component, and compute the complement of the expected reward valuegt Oue to the
similarity among these constituent measures, the expected instant-of-time reward values explained abov
can be evaluated using the same predicate-rate pair:

e Predicate MARK(f ai l ure) ==
e Rate 1.
6. Evaluation results

Applying the SAN reward models describedSection 5and usingUltraSAN we evaluate the per-
formability indexY . Before we proceed to discuss the numerical results, we define the following notation:

Unew fault-manifestation rate of the process corresponding to the newly upgraded software version;

Hold fault-manifestation rate of a process corresponding to an old software version;
c coverage of an AT;

A message-sending rate of a process;

Dext probability that the message a process intends to send is an external message;
o acceptance-test completion rate;

B checkpoint-establishment completion rate.

We begin with conducting a study of the optimality of the G-OP duratioiconsidering the impact

of the fault-manifestation rate of the upgraded software component. Specifically, we use the parameter
values shown inTable 3 in which all the parameters involving time presume that time is quantified

in hours. Accordingly) = 1200 means that the mean time between message sending events (for an
individual process) is 3 s; similarlg, = 6000 and3 = 6000 imply that the mean time to the completion

of an AT-based validation and the mean time to the completion of a checkpoint establishment are both

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 269

Table 3

Parameter value assignment

0 A Mnew Mold c Pext (o4 B
10000 1200 10 10°8 0.95 0.1 6000 6000

600 ms. Further, we let(seeEq. (4) be a decreasing function ®fthe mean time to error detection. More
succinctly,y = 1—1/6. This function is defined based on the following consideration. Safeguard activities
would no longer be performed afterwhen error detection brings the system back to the normal mode
with P29 and B in mission operation; since that implies an unsuccessful (but safe) onboard upgrade, the
performance cost paid for the safeguard activities upvould yield an additional reduction of mission
worth, relative to the case of a successful onboard upgrade.

The numerical results from this study are displayed as the curve with solid deits @ The values of
the performability index indicate that the optimal duration of the G-OP mode for this particular setting
is 7000 h, which yields the best worth of the mission pedodue to the greatest possible reduction
of expected total performance degradation. This implies that for this particular setéragnaller than
7000 would lead to a greater expected performance degradation due to the increased risk of potential
design-fault-caused failure. On the other hand, if wegldie larger, then the increased performance
degradation due to performance overhead would more than negate the benefit from the extended guardec
operation.

By decrementing the fault-manifestation rate B8R tnew) to 0.5 x 10~ (while letting other parameter
values remain the same), we obtain another set of valuésdfillustrated by the companion curve marked
by hollow dots inFig. 9. The two curves together reveal that the optimalitypa$ very sensitive to the
reliability of the upgraded software component. In particular, we observe thatpfagis decremented

1. 6 T T T T T T T T T
Hpew = 0.0001 —e—
5 IJneW = 0. 00005 —e—

=

Performability Index (Y)
[N
w

1 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Cuar ded- Operation Duration (¢

Fig. 9. Effect of fault-manifestation rate on optimal G-OP durati®ge=(10,000).

270 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

1.6 T T T T T T T T T

Performability Index (Y)
(=Y
w

1.1f py= 0.98, p,= 0.95 —e— 1
py= 0.95, p,= 0.90 —s—

1 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Quar ded- Operation Duration (o

Fig. 10. Effect of performance overhead on optimal G-OP duratica 10,000).

from 107410 0.5x 10~4, the optimalp is dropped from 7000 to 5000 h, even though the performance costs

of safeguard activities remain low (thus and p, remain high, and equal 0.98 and 0.95, respectively).
While it is quite obvious that a smallet,e,, Will favor a shorter duration of the G-OP mode, this study
confirms the relation between the two system attributes and helps us to recognize the sensitivity of this
relation.

In the next study, we change the values@ndg to 2500 (i.e., the times to completion of an AT-based
validation and completion of a checkpoint establishment become 1440 ms, up from 600 ms in the previous
study), implying that the performance costs for safeguard activities become higher. The evaluation results
are shown as the curve with tiny hollow trianglegHig. 10, in which we duplicate the curve with solid
dots fromFig. 9 for comparison. With the decremented values of the basic paranaetardg, p; and
02 (which are “derived parameters”) are reduced to 0.95 and 0.90, respectively. As shown by the curve
with the tiny hollow triangles, the optimal for this case is 6000, down from 7000. The change of the
optimal ¢ is again a result of the tradeoffs between the two types of expected performance degradation.
More specifically, the change is due to the fact that the increased performance overhead tends to furthe
negate dependability benefits, and thus suggests an earlier cutoff line for guarded operation.

In addition, we carry out an evaluation experiment to investigate the effect of AT's coveraye,
the optimal G-OP duration. The results are displaye#igm 11 Note that the top curve in the figure
is duplicated frontfig. 10 and consists of the data points resulting from the evaluation experiment that
assumes = 0.95 and yields overhead measures equal to 0.05 and 0.1Q(i£.0.95 andp; = 0.90,
respectively). We observe from the figure that while AT’s coverage decreases significantly, the optimal
¢ remains the same (i.e., 6000 h), implying that the optimal valugisfrather insensitive to variations
of ¢. This indicates that the tradeoffs between the two types of performance degradation (that due to
the performance cost of G-OP, and that due to potential design-fault-caused failure) chiefly involve the

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 271

1.5 T T T T T T T T T

145} ¢ = 0.95 —+— 1

L4l €=075 —— |
= 0.50 —— i

[EnY
= .

. w
w &)
T T
1 1

Performability Index (Y)
- -
= -
f . o
= (631 N (€]
T T T T
1 1 1 1

=
o
a1
T
I

1 1 1 1 1 1 1 1 1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Guar ded- Operation Duration (@)

[EnY
o

Fig. 11. Effect of AT coverage on optimal G-OP duratién= 10,000).

reliability of software components and the performance overhead of safeguard activities, rather than
the effectiveness of error detection, given that performance costs of AT and checkpointing are low or
moderately low. On the other hand, the valueYoitself is sensitive to variations af. As shown in

the figure, the maximum value of drops from over 1.45 to about 1.15 wheiis reduced from 0.95

to 0.50.

We have also conducted an experiment in whidks set to 0.20. In this case, the greatest value of
Y equals 1.06, which is obtained when G-OP duration is 4000. However, this maximum value suggests
that the gained benefit is too insignificant to justify the use of guarded operations of any lengths (when
¢ = 0.20). Further, when we letbe 0.10,Y becomes less than 1 for amyin (0, 6] and is a decreasing
function of ¢, implying that it is not worthwhile to consider G-OP if AT’s coverage is very low. While
those results are fairly intuitive, they show that: (1) the behavior of our model is reasonable, and (2) the
definition ofY allows this performability measure to support decision making in various capacities. More
specifically,Y not only enables us to determine the valugpahat would yield the greatest reduction
of the expected total performance degradation, but also permits us to examine whether the amount of
resulting benefit (i.e., the extent of degradation reduction) will be significant enough to justify the use of
G-OP under a particular setting.

Note that so far we have us@dthe time to the next upgrade, as a constant. However, as described
in Section 2 6 is chosen based on a software engineering decision (at the time onboard validation
completes). The decision depends upon at least two factors: (1) the planned duty of the flight software
in the forthcoming mission phases, and (2) the quality of the flight software learned through onboard
validation. Accordingly, we analyze the effects of the valué oh the optimality ofp. Specifically, we
repeat the study that yields the results showRim 9, but reduce to 5000 h. The resulting curves are
displayed inFig. 12

272 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

1. 35 T T T T T T T T T

1.3

1.25

Performability Index (Y)
=
=
o1

1.1t
1.05 -

Hnew = 0.0001 ——

1% Wyew= 0.00005 —o—

O. 95 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Guar ded- Operation Duration (@)

Fig. 12. Effect of fault-manifestation rate on optimal G-OP duratibe-(5000).

It is interesting to observe that while other parameter values remain the same as those shown in
Table 3(meaning that the performance and dependability attributes of the system itself are the same
as in the previous study), the reductiondagignificantly changes the values for the optimpalSpecif-
ically, the optimal values o for the cases in whicluney €quals 164 and Q5 x 104 go down to
2500 and 2000, respectively. In addition, the curves reveallttdrbps at a more significant rate soon
after reaching its maximum value, relative to the case in whieguals 10,000. This is a reasonable
result because reliability is generally a decreasing function of time, for a system without maintenance.
More precisely, if we view the ending point of,[@] as a point at which the subsequent system main-
tenance (i.e., the next guarded onboard upgrade) is due, then as the anticipated time to this point be
comes shorter, the likelihood that the system will fail before reaching the forthcoming maintenance
decreases. This, in turn, favors the decision of letting guarded operation end at an earlier point to min-
imize the expected total performance degradation. By inspecting the results of the constituent mea-
sures that are available to us, namelX; < 1) and ffh(r) dr, we are able to validate this
explanation.

It is worth noting that numerous analytic models for checkpointing algorithm evaluation have been de-
veloped (se@l8-20]for example). The majority of checkpointing models focused attention on hardware
transient faults or other types of faults that would not cause concern about the correctness of process state
saved in checkpoints. For the most part, performance-dependability tradeoff studies for checkpointing
algorithms were designed to help determine how often the system in question should take a checkpoint
In contrast to those models, the performability analysis conducted in this paper deals with the effects
of software design faults in a distributed computing environment. More specifically, our model is con-
cerned with uncertainties about the validity of process states and state contamination caused by messac
passing, and is aimed at supporting the decision on how long the system should be under protection. Ou

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 273

performability measure is thereby defined in a way that takes into account system betiasimgsand
beyondhe period of guarded operation. In turn, this implies that we must deal with a set of complicated
sample paths and suggests the feasibility of a model-translation approach.

7. Concluding remarks

We have conducted a model-based performability study that analyzes the guarded-operation duration for
onboard software upgrading. By translating a design-oriented model into an evaluation-oriented model,
we are able to reach a reward model solution for performability intthat supports the decision on the
duration of guarded operation.

It is always desirable to directly apply efficient analytic techniques and existing tools for solving
modeling problems. In practice, however, there are cases in which desired modeling techniques and tools
cannot be immediately applied to an engineering problem we seek to solve. Although we may simplify
the problem to make it fit a particular modeling method or a completely tool-based solution, we may lose
important information and get results that are inaccurate or even misleading if the required simplification
is excessive.

Accordingly, the intent of this investigation was not to develop a general modeling method superior to
some existing techniques. Instead, our motivation has been to investigate the methods that lead to better
utilization of existing modeling techniques and tools for engineering applications. As exemplified in this
paper, the model-translation approach enables us to expose hidden opportunities to apply efficient model
construction and solution strategies for the evaluation of an otherwise difficult performability measure.
More generally, successive model translation enables us to conduct performability analyses for complex
engineering applications in which boundaries and relationships between subsystems, or, between systern
properties considered in a performability measure, are not sufficiently clear from the original problem
formulation. By promoting approaches that bridge the gap between difficult engineering applications
and analytic methods developed by the research community, such as reward model solution techniques,
behavioral decomposition, and hierarchical composition, this effort makes an important contribution to
the area of performance and dependability modeling.

It is also worthwhile noting that unlike separate performance and dependability measures (such as
response time and availability) that can be assessed directly through testbed experiments, performa-
bility measures are often defined to quantify the collective effect of various properties of a system on
its “ability to perform”. Accordingly, in many cases it could be very difficult for us to obtain the fi-
nal solution of a performability measure directly from measurement-based or testbed-simulation-based
evaluation. However, when the problem of solving a performability measure is transformed into that
of evaluating constituent reward variables, it may become possible for us to choose among analytic,
measurement-based, and testbed-simulation-based techniques, or a hybrid combination of them, to com-
pute the individual measures for the final solution. Furthermore, the model-translation approach permits
us to access the results of the constituent measures to gain more insight from a model-based performability
evaluation.

Our current effort is directed toward continuing this investigation by carrying out more case studies
in further depth. We also plan to investigate the feasibility of hybrid composition methods for eval-
uating constituent reward variables; for example, we might combine model-based approaches with
measurement-based and/or simulation-based approaches for a performability evaluation. In addition,

274 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

since we have already developed the GSU middleware and are in the process of porting it to the Future
Deliveries Testbed at JPL, we intend to experimentally validate the parameter values used in our analysis
and the results of the constituent measures through applying testbed-simulation.

Acknowledgements

The authors are thankful to the anonymous reviewers to whom most revisions should be credited. The
work reported in this paper was supported in part by NASA Small Business Innovation Research (SBIR)
contract NAS3-99125.

References

[1] A.T. Tai, K.S. Tso, L. Alkalai, S.N. Chau, W.H. Sanders, On low-cost error containment and recovery methods for guarded
software upgrading, in: Proceedings of the 20th International Conference on Distributed Computing Systems (ICDCS
2000), Taipei, Taiwan, April 2000, pp. 548-555.

[2] A.T. Tai, K.S. Tso, L. Alkalai, S.N. Chau, W.H. Sanders, On the effectiveness of a message-driven confidence-driven
protocol for guarded software upgrading, Perform. Eval. 44 (2001) 211-236.

[3] A.T. Tai, K.S. Tso, L. Alkalai, S.N. Chau, W.H. Sanders, Low-cost error containment and recovery for onboard guarded
software upgrading and beyond, IEEE Trans. Comput. 51 (2002) 121-137.

[4] J.F. Meyer, On evaluating the performability of degradable computing systems, IEEE Trans. Comput. C-29 (1980) 720-731.

[5] R.A. Howard, Dynamic Probabilistic Systems, vol. Il, Semi-Markov and Decision Processes, Wiley, New York, 1971.

[6] W.H. Sanders, J.F. Meyer, A unified approach for specifying measures of performance, dependability, and performability, in:
A. Avizienis, J.C. Laprie (Eds.), Dependable Computing for Critical Applications, Dependable Computing and Fault-tolerant
Systems, vol. 4, Springer, Vienna, Austria, 1991, pp. 215-237.

[7] G. Ciardo, A. Blackmore, P.F. Chimento, J. Muppala, K.S. Trivedi, Automated generation and analysis of Markov reward
models using stochastic reward nets, in: C. Meyer, R.J. Plemmons (Eds.), Linear Algebra, Markov Chains, and Queueing
Models, IMA Volumes in Mathematics and Its Applications, vol. 48, Springer, Heidelberg, Germany, 1993, pp. 145-191.

[8] S. Racz, M. Telek, Performability analysis of Markov reward models with rate and impulse reward, in: M.S.B. Plateau, W.
Stewart (Eds.), Proceedings of the International Conference on Numerical Solution of Markov Chains, Zaragoza, Spain,
1999, pp. 169-187.

[9] J.B. Dugan, K.S. Trivedi, M.K. Smotherman, R.M. Geist, The hybrid automated reliability predictor, AIAA J. Guidance
Contr. Dyn. 9 (3) (1986) 319-331.

[10] M. Malhotra, K.S. Trivedi, A methodology for formal expression of hierarchy in model solution, in: Proceedings of the
Fifth International Workshop on Petri Nets and Performance Models, Toulouse, France, October 1993, pp. 258-267.

[11] R. Geist, Extended behavioral decomposition for estimating ultrahigh reliability, IEEE Trans. Reliab. R-40 (1991) 22-28.

[12] A.P.A. van Moorsel, B.R. Haverkort, Probabilistic evaluation for the analytical solution of large Markov chains: algorithms
and tool support, Microelectron. Reliab. 36 (6) (1996) 733—-755.

[13] W.H. Sanders, W.D. Obal Ill, M.A. Qureshi, F.K. Widjanarko, The UltraSAN modeling environment, Perform. Eval. 24 (1)
(1995) 89-115.

[14] G. Ciardo, J. Muppala, K. Trivedi, SPNP: stochastic Petri net package, in: Proceedings of the International Workshop on
Petri Nets and Performance Models, Kyoto, Japan, December 1989, pp. 142-151.

[15] J.F. Meyer, A. Movaghar, W.H. Sanders, Stochastic activity networks: structure, behavior, and application, in: Proceedings
of the International Workshop on Timed Petri Nets, Torino, Italy, July 1985, pp. 106-115.

[16] A.T. Tai,K.S. Tso, W.H. Sanders, L. Alkalai, S.N. Chau, Low-cost flexible software fault tolerance for distributed computing,
in: Proceedings of the 12th International Symposium on Software Reliability Engineering (ISSRE 2001), Hong Kong, China,
November 2001, pp. 148-157.

[17] B. Littlewood, D. Wright, Stopping rules for the operational testing of safety-critical software, in: Proceedings of the Digest
of the 25th Annual International Symposium on Fault-tolerant Computing, Pasadena, CA, June 1995, pp. 444-453.

A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276 275

[18] V. Nicola, J. van Spanje, Comparative analysis of different models of checkpointing and recovery, IEEE Trans. Software
Eng. 16 (1990) 807-821.

[19] E.G. Coffman, E.N. Gilbert, Optimal strategies for scheduling checkpoints and preventive maintenance, IEEE Trans. Reliab.
R-39 (1990) 9-18.

[20] R.V. Campos, E. de Souza e Silva, Availability and performance evaluation of database systems under periodic
checkpointing, in: Proceedings of the Digest of the 25th Annual International Symposium on Fault-tolerant Computing,
Pasadena, CA, June 1995, pp. 269-277.

AnnT. Tai received her Ph.D. in Computer Science from the University of California, Los Angeles. She is
the President and a Sr. Scientist of IA Tech, Inc., Los Angeles, CA. Prior to 1997, she was associated with
SoHaR Incorporated as a Sr. Research Engineer. She was an Assistant Professor at the University of Texas
at Dallas during 1993. Her current research interests concern the design, development, and evaluation
of dependable computer systems, error containment and recovery algorithms for distributed computing,
and distributed fault-tolerant system architectures. She authored the book, Software Performability: From
Concepts to Applications, published by Kluwer Academic Publishers.

William H. Sandersreceived his B.S.E. in Computer Engineering (1983), his M.S.E. in Computer, In-
formation, and Control Engineering (1985), and his Ph.D. in Computer Science and Engineering (1988)
from the University of Michigan. He is currently a Professor in the Department of Electrical and Com-
puter Engineering and the Coordinated Science Laboratory at the University of lllinois. He is Chair of
the IEEE TC on Fault-tolerant Computing and Vice-Chair of IFIP Working Group 10.4 on Dependable
Computing. In addition, he serves on the Board of Directors of ACM Sigmetrics and the Editorial Board
of IEEE Transactions on Reliability. He is a Fellow of the IEEE and a Member of the IEEE Computer,
Communications, and Reliability Societies, as well as the ACM, IFIP Working Group 10.4 on Dependable
Computing, Sigma Xi, and Eta Kappa Nu.

Dr. Sanders’sresearch interests include performance/dependability evaluation, dependable computing, and reliable distributed
systems. He has published more than 100 technical papers in these areas. He was Co-Program Chair of the 29th International
Symposium on Fault-tolerant Computing (FTCS-29), was program Co-Chair of the Sixth IFIP Working Conference on Depend-
able Computing for Critical Applications, and has served on the program committees of numerous conferences and workshops.
He is a co-developer of three tools for assessing the performability of systems represented as stochastic activity networks:
METASAN, UltraSAN, and Mobius. UltraSAN has been distributed widely to industry and academia, and licensed to more than
200 universities, several companies, and NASA for evaluating the performance, dependability, and performability of complex
distributed systems. He is also a Co-Developer of the Loki distributed system fault injector and the AQUA middleware for
providing dependability to distributed object-oriented applications.

Leon Alkalai is the Center Director for the Center for Integrated Space Microsystems, a center of excel-
lence at the Jet Propulsion Laboratory, California Institute of Technology. The main focus of the center
is the development of advanced microelectronics, micro-avionics, and advanced computing technologies
for future deep-space highly miniaturized, autonomous, and intelligent robotic missions. He joined JPL
in 1989 after receiving his Ph.D. in Computer Science from the University of California, Los Angeles.
Since then, he has worked on numerous technology development tasks including advanced microelec-
tronics miniaturization, advanced microelectronics packaging, reliable and fault-tolerant architectures.
He was also one of the NASA appointed co-leads on the New Millennium Program Integrated Product
Development Teams for Microelectronics Systems, a consortium of government, industry, and academia
to validate technologies for future NASA missions in the 21st century.

276 A.T. Tai et al./ Performance Evaluation 56 (2004) 249-276

Savio N. Chau received his Ph.D. in Computer Science from the University of California, Los Angeles.

He is Principle Engineer and the Supervisor of the Advanced Concepts and Architecture Group at the Jet
Propulsion Laboratory. He is currently developing scalable multi-mission avionics system architectures.
He has been investigating techniques to apply low-cost commercial bus standards and off-the-shelf prod-
ucts in highly reliable systems such as long-life spacecraft. His research areas include scalable distributed
system architecture, fault tolerance, and design-for-testability. He is a Member of Tau Beta Pi and Eta
Kappa Nu.

Kam S. Tsoreceived his Ph.D. in Computer Science from the University of California, Los Angeles, M.S.

in Electronic Engineering from the Philips International Institute, Eindhoven, The Netherlands, and B.S.

in Electronics from the Chinese University of Hong Kong, Hong Kong. From 1986 to 1996, he worked at
the Jet Propulsion Laboratory and SoHaR Incorporated, conducting research and development on robotics
systems, fault-tolerant systems, and reliable software. He is currently the Vice President of IA Tech, Inc.
Dr. Tso’s research interests include World Wide Web technologies, distributed planning and collaboration,
high performance and dependable real-time software and systems.

	Performability analysis of guarded-operation duration: a translation approach for reward model solutions
	Introduction
	Review of guarded software upgrading
	Performability measure
	Definition
	Formulation
	High-level elaboration of expressions

	Translation for reward model solutions
	Translation based on sample-path analysis
	Translation of YphiS2

	SAN reward model solutions for constituent measures
	SAN reward models
	SAN reward structures
	Solving constituent measures in RMGd
	Solving constituent measures in RMGp
	Solving constituent measures in RMNd

	Evaluation results
	Concluding remarks
	Acknowledgements
	References

