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Abstract

Performability measures are often defined for analyzing the worth of fault-tolerant systems whose performance is grace-
fully degradable. Accordingly, performability evaluation is inherently well suited for application of reward model solution
techniques. On the other hand, the complexity of performability evaluation for solving engineering problems may prevent us
from utilizing those techniques directly, suggesting the need for approaches that would enable us to exploit reward model
solution techniques through problem transformation. In this paper, we present a performability modeling effort that analyzes
the guarded-operation duration for onboard software upgrading. More specifically, we define a “performability index”Y that
quantifies the extent to which the guarded operation with a durationφ reduces the expected total performance degradation.
In order to solve forY , we progressively translate its formulation until it becomes an aggregate of constituent measures
conducive to efficient reward model solutions. Based on the reward-mapping-enabled intermediate model, we specify reward
structures in the composite base model which is built on three stochastic activity network reward models. We describe the
model-translation approach and show its feasibility for design-oriented performability modeling.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In order to protect an evolvable, distributed embedded system for long-life missions against the
adverse effects of design faults introduced by an onboard software upgrade, a methodology called
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guarded software upgrading(GSU) has been developed[1–3]. The GSU methodology is supported by
a message-driven confidence-driven (MDCD) protocol that enables effective and efficient use of check-
pointing and acceptance test techniques for error containment and recovery. More specifically, the MDCD
protocol is responsible for ensuring that the system functions properly after a software component is re-
placed by an updated version during a mission, while allowing the updated component to interact freely
with other components in the system. The period during which the system is under the escort of the
MDCD protocol is called “guarded operation”.

Guarded operation thus permits an upgraded software component to start its service to the mission
in a seamless fashion, and, if the escorting process determines that the upgraded component is not
sufficiently reliable and thus imposes an unacceptable risk to the mission, ensures that the system will
be safely downgraded back by replacing the upgraded software component with an earlier version. It
is anticipated that sensible use of this escorting process will minimize the expected total performance
degradation, which comprises: (1) the performance penalty due to design-fault-caused failure, and (2) the
performance reduction due to the overhead of the safeguard activities. Accordingly, an important design
parameter is the duration of the guarded operationφ, as the total performance degradation is directly
influenced by the length of the escorting process. In turn, this suggests that a performability analysis[4]
is pertinent to the engineering decision-making.

Performability modeling often implies the need to consider a broad spectrum of system attributes
simultaneously and assess their collective effect on the benefit from the system or the worth of a mission
the system intends to accomplish. Accordingly, performability evaluation is inherently well suited for the
applications of: (1) reward model solution techniques (see[5–8] for example), (2) methods for hierarchical
or hybrid composition (see[9,10] for example), and behavioral decomposition (see[11,12]for example),
and (3) tools that implement those modeling techniques (see[13,14] for example). On the other hand,
the complexity of performability measures for analyzing engineering problems and the dependencies
among the system attributes or subsystems that are subject to a joint consideration may prevent us
from exploiting those techniques in a straightforward fashion. Hence, performability analysis with the
motivation described in the preceding paragraph presents us with greater challenges than the separate
dependability and performance studies for GSU we conducted earlier[2,3].

To address the challenges, we propose a model-translation approach that enables us to exploit reward
model solution techniques which we would otherwise be unable to utilize. Rather than attempt to map
the performability measure directly to a single reward structure in a monolithic model, we transform the
problem of solving a complex performability measure into that of evaluating several constituent reward
variables, each of which can be easily mapped to a reward structure and thereby evaluated efficiently
using any software tool that supports reward model solutions.

In particular, we first define a “performability index”Y , that quantifies the extent to which the guarded
operation with a durationφ reduces the expected total performance degradation, relative to the case in
which guarded operation is completely absent. For clarity and simplicity of the design-oriented model,
we allow Y to be formulated at a high level of abstraction. In order to solve forY efficiently, we
choose not to elaborate its formulation directly or expand the design-oriented model into a monolithic,
state-space based model. Instead, we translate the model progressively, through analytic manipulation,
into an evaluation-oriented form that is an aggregate of constituent measures conducive to reward model
solutions. Based on this intermediate, reward-mapping-enabled model, we take the final step to specify
reward structures in the composite base model, which is built on three measure-adaptive stochastic activity
network (SAN)[15] reward models.
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As with behavioral decomposition methods and hierarchical composition techniques, our model-
translation approach permits us to avoid dealing with a model that is too complex to allow direct derivation
of a closed-form solution. Whereas the most important relationship between those previously developed
techniques and our approach is that successive model translation is intended to enable the application
of techniques for reward model solutions, behavioral decomposition, and hierarchical/hybrid composi-
tion to performability modeling problems in which: (1) clear boundaries among “subsystems” or system
properties could not be perceived from the viewpoint of the original problem formulation, or (2) the
mathematical implications (to the performability measure) of system behavior may not become apparent
until we elaborate the formulation of the problem to a certain degree. More generally, the process of
transforming the problem of solving a complex performability measure into that of evaluating constituent
reward variables naturally enables us to utilize those existing, efficient modeling techniques and tools
that we would be unable to exploit without model translation, widening the scope of their applicability.

The next section provides an overview of the GSU methodology and a description of guarded operation.
Section 3defines and formulates the performability measure.Section 4explains the translation process
in detail, followed bySection 5, which shows how the reward structures are specified in the SAN models.
Section 6presents an analysis of optimal guarded-operation duration. The paper is concluded inSection 7,
which summaries what we have accomplished.

2. Review of guarded software upgrading

The development of the GSU methodology was motivated by the challenge of guarding an embedded
system against the adverse effects of design faults introduced by onboard software upgrades[1,3]. The
performability study presented in this paper assumes that the underlying embedded system consists of
three computing nodes. (This assumption is consistent with the current architecture of the Future Deliveries
Testbed at JPL.4) Since a software upgrade is normally conducted during a non-critical mission phase
when the spacecraft and science functions do not require full computation power, only two processes,
corresponding to two different application software components, are supposed to run concurrently and
interact with each other. To exploit inherent system resource redundancies, we let the old version, in
which we have high confidence due to its sufficiently long onboard execution time, escort the new-version
software component through two stages of GSU, namely,onboard validationandguarded operation, as
illustrated inFig. 1.

Further, we make use of the third processor, which would otherwise be idle during a non-critical mission
phase, to accommodate the old version such that the three processes (i.e., the two corresponding to the
new and old versions, and the process corresponding to the second application software component) can
be executed concurrently. To aid in the description, we introduce the following notation:

Pnew
1 The process corresponding to the new version of an application software component.

Pold
1 The process corresponding to the old version of the application software component.

P2 The process corresponding to another application software component (which is not
undergoing upgrade).

4 More recently, we have extended the error containment and recovery algorithms so that the methodology can serve a more
general class of distributed embedded systems[16].
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Fig. 1. Onboard guarded software upgrading.

The first stage of GSU (i.e., onboard validation), which can be viewed as extended testing in an actual
space environment, starts right after the new version is uploaded to the spacecraft. During this stage,
the outgoing messages of the shadow process Pnew

1 are suppressed but selectively logged, while Pnew
1

receives the same incoming messages that the active process Pold
1 does. Thus, Pnew

1 and Pold
1 can per-

form the same computation based on identical input data. By maintaining an onboard error log that
can be downloaded to the ground for validation-results monitoring and Bayesian-statistics reliability
analyses (as suggested by some prior work in the research literature, see[17] for example), we can
make decisions regarding how long onboard validation should continue and whether Pnew

1 can be al-
lowed to enter mission operation. Moreover, onboard extended testing leads to a better estimation of the
fault-manifestation rate of the upgraded software. If onboard validation concludes successfully, then Pnew

1
and Pold

1 switch their roles to enter the guarded operation stage. The time to the next upgradeθ is deter-
mined upon the completion of onboard validation, according to: (1) the planned duty of the flight software
in the forthcoming mission phases, and (2) the quality of the flight software learned through onboard
validation.

During guarded operation, Pnew
1 actually influences the external world and interacts with process P2

under the escort of the MDCD error containment and recovery protocol, while the messages of Pold
1 that

convey its computation results to P2 or external systems (e.g., devices and actuators) are suppressed. We
call the messages sent by processes to external systems and the messages between processesexternal
messagesandinternal messages, respectively.

Because the objective of the MDCD protocol is to mitigate the effect of residual software design
faults, we must ensure consistency among different processes’ views on verified correctness (validity) of
process states and messages. Accordingly, the MDCD algorithms aim to ensure that the error recovery
mechanisms can bring the system into a global state that satisfies validity-concerned global state consis-
tency and recoverability. The key assumption used in the derivation of the MDCD algorithms is that an
erroneous state of a process is likely to affect the correctness of its outgoing messages, while an erro-
neous message received by an application software component will result in process state contamination
[2]. Accordingly, the necessary and sufficient condition for a process to establish a checkpoint is that
the process receives a message that will make the process’s otherwise non-contaminated state become
potentially contaminated. In order to keep performance overhead low, the correctness validation mecha-
nism,acceptance test(AT), is only used to validate external messages from the active processes that are
potentially contaminated. By a “potentially contaminated process state”, we mean: (1) the process state
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Fig. 2. MDCD protocol for guarded operation.

of Pnew
1 which is created from a low-confidence software component, or (2) a process state that reflects

the receipt of a not-yet-validated message that is sent by a process when its process state is potentially
contaminated.

Fig. 2 illustrates the behavior of the MDCD protocol. The horizontal lines in the figure represent the
software executions along the time horizon. Each of the shaded regions represents an execution interval
during which the state of the corresponding process is potentially contaminated. Symbolsmij andMik

denote, respectively, thejth internal message andkth external message sent by process Pi.
Upon the detection of an erroneous external message, Pold

1 will take over Pnew
1 ’s active role and prepare

to resume normal computation with P2. By locally checking its knowledge about whether its process
state is contaminated, a process will decide to roll back or roll forward, respectively. After a rollback
or roll-forward action, Pold

1 will “re-send” the messages in its message log or further suppress messages
it intends to send, based on the knowledge about the validity of Pnew

1 ’s messages. After error recovery
(which marks an unsuccessful but safe onboard upgrade), the system goes back to the normal mode
(under which safeguard functions, namely, checkpointing and AT, are no longer performed) until the next
scheduled upgrade. An undetected, erroneous external message5 will result in system failure, meaning
that the system will become unable to continue proper mission operation. On the other hand, as the MDCD
algorithms allow very simple error recovery[3], we anticipate that the system will recover from an error
successfully as long as the detection is successful.

If no error occurs duringφ, then guarded operation concludes and the system goes back to the normal
mode (seeFig. 1). Note that while the time to the next scheduled onboard upgradeθ is chosen via a
software engineering decision, the duration of guarded operationφ is a design parameter that influences
system performance and dependability. The central purpose of this paper is to study how to evaluate a
performability measure for determining an optimalφ. In the section that follows, we define and formulate
the performability measure.

5 For simplicity, in the remainder of the paper, we use the term “error” to refer to an erroneous external message.



254 A.T. Tai et al. / Performance Evaluation 56 (2004) 249–276

3. Performability measure

3.1. Definition

We define a performability measure that will help us choose the appropriate duration of guarded
operationφ. More specifically,φ will be determined based on the value of the performability mea-
sure that quantifies the expected total performance degradation reduction resulting from guarded
operation.

As mentioned inSection 1, we consider two types of performance degradation, namely

1. the performance degradation due to design-fault-caused failure, and
2. the performance degradation caused by the performance overhead of checkpoint establishment and

AT-based validation.

Clearly, a greater value ofφ implies: (1) a decrease in the expected performance degradation due to
potential system failure caused by residual design faults in the upgraded software component, and (2)
an increase in the expected performance degradation due to the overhead of checkpointing and AT. We
let “mission worth” be quantified by the system time that is devoted to performing application tasks
rather than safeguard activities. If we letWφ denote the amount of mission worth that is accrued through
θ when the duration of guarded operation (G-OP) isφ, thenW0 refers to the total mission worth ac-
crued throughθ for the boundary case in which the G-OP mode is completely absent (having a zero
duration). On the other extreme, if the system is perfectly reliable, then it would not require guarded
operation and would thus be free of either type of performance degradation described above. We view
this extreme case as the “ideal case” and let its total mission worth (accrued throughθ) be denoted
byWI .

It is worthwhile noting that the difference between the expected values ofWI andWφ can be regarded as
the expected mission worth reduction, or the expected total performance degradation (from the ideal case)
that the system experiences throughθ when the G-OP duration isφ. Similarly, the difference between
the expected values ofWI andW0 represents the expected total performance degradation the system
experiences throughθ when the G-OP mode is absent throughoutθ. It follows that ifE[WI ] −E[Wφ] <
E[WI ] −E[Wφ′ ], thenφ can be considered a better choice thanφ′. Accordingly, we let the performability
measure take the form of aperformability indexY , that quantifies the extent to which a G-OP duration
φ reduces the expected total performance degradation, relative to the case in which the G-OP mode is
completely absent. More succinctly,Y is the ratio of the difference betweenE[WI ] andE[W0] to that
betweenE[WI ] andE[Wφ]:

Y = E[WI ] − E[W0]

E[WI ] − E[Wφ]
. (1)

Based on the above discussion, we can anticipate a performability benefit from a guarded operation that
is characterized by a (non-zero) durationφ whenE[WI ] − E[Wφ] is less thanE[WI ] − E[W0]. More
precisely,Y > 1 implies that the application of guarded operation will yield a performability benefit with
respect to the reduction of the expected total performance degradation. On the other hand,Y ≤ 1 suggests
that guarded operation will not be effective for total performance degradation reduction. We formulate
E[WI ], E[W0], andE[Wφ] in the next section.
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3.2. Formulation

As explained above, we choose to quantify “mission worth” in terms of the system time devoted to
performing application tasks (rather than safeguard activities) that is accrued through mission periodθ.
Further, the system behavior described inSection 2suggests that an error that propagates to an external
system will nullify the worth of that mission period. Since neither the ideal case nor the case in which
the G-OP mode is completely absent involves safeguard activities,WI andW0 can be formulated in a
straightforward fashion:

WI = 2θ, (2)

W0 =
{

2θ if no error occurs throughoutθ,

0 otherwise.
(3)

Note that the coefficient 2 in the above equations reflects the fact that in the avionics system we consider,
only two application processes actively service the mission duringθ. (For the cases to whichWI andW0

correspond, the two processes will always be Pnew
1 and P2.)

To help formulate an expression forWφ, we group the possible behaviors (i.e., sample paths) that the
system may exhibit into several categories. In particular, since we do not make the assumption that Pold

1
and P2 are perfectly reliable and AT has a full coverage, we must consider situations where the system fails
during guarded operation, or fails after error recovery. This leads us to define three classes of sample paths:
(i) those (called S1 below) in which no error occurs, and the system thus goes through the upgrade process
successfully, (ii) those (called S2 below) in which an error occurs duringφ, and the system successfully
recovers, and (iii) those involving the occurrence of an error from which the system cannot recover. (Since
no mission worth is accumulated for sample paths of the third category, they are not considered in the
expressions of mission worth.) More specifically, we define sets of sample paths S1 and S2 as follows:

(S1) No error occurs by the end ofφ, so the system enters the normal mode with Pnew
1 and P2 in mission

operation afterφ; the upgraded system subsequently goes through the period (θ − φ) successfully.
(S2) An error occurs and is detected by Pnew

1 or P2 at τ, 0 < τ ≤ φ, so that error recovery brings the
system into the normal mode with Pold

1 and P2 in mission operation afterτ; the recovered system
subsequently goes through (θ − τ) successfully.

We letρt,1 andρt,2 denote the fractions of time during which Pnew
1 and P2, respectively, are making forward

progress (rather than performing safeguard functions), given that the system is under the G-OP mode
until t (t ≤ φ). Wφ can then be defined as follows:

Wφ =



(ρφ,1 + ρφ,2)φ + 2(θ − φ) if system experiences a sample path in S1,

γ((ρτ,1 + ρτ,2)τ + 2(θ − τ)) if system experiences a sample path in S2,

0 otherwise,

(4)

where the coefficientγ (0 < γ < 1) is thediscount factorthat takes into account the additional mission
worth reduction for an unsuccessful but safe onboard software upgrade, relative to the case in which the
upgrade succeeds. We can defineγ according to the implication of S2 for the system in question. For
clarity of illustration, we will postpone our description of how we defineγ until Section 6, in which we
present the evaluation experiments and results.
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3.3. High-level elaboration of expressions

In order to solve forY , we first elaborate its formulation at a high level of abstraction. It is clear that
E[WI ] = 2θ. Thus we proceed to elaborateE[W0], the expected value of mission worth when G-OP
duration is zero. It is worth noting that whenφ = 0, the sample-path set S2 becomes degenerate while S1
is reduced to a “boundary-case version” that enumerates the system behaviors belonging to the category
“no error occurs throughoutθ when the G-OP mode is completely absent duringθ”. Then, fromEq. (3),
which implies that mission worth will be 2θ if the system takes a sample path in this boundary-case
version of S1, it follows that

E[W0] = 2θP(S1,whenφ = 0). (5)

Based onEq. (4)and the theorem of total expectation, we derive the following expression forE[Wφ]:

E[Wφ] = YS1
φ + YS2

φ , (6)

where

YS1
φ =E[(ρφ,1 + ρφ,2)φ + 2(θ − φ)]P(S1,whenφ > 0)

= ((ρφ,1 + ρφ,2)φ + 2(θ − φ))P(S1,whenφ > 0). (7)

We notice that the application-purpose message-passing events that trigger checkpointing and AT (which
dominate the performance overhead) are significantly more frequent than the fault-manifestation events.
Moreover, the mean time between message-passing events is only seconds in length, whereas a reasonable
value ofφ will be in the range of hundreds or thousands of hours. Hence, we can assume that the system
reaches a steady state with respect to the performance-overhead related events before an error occurs or the
G-OP duration ends. Thus,ρt,1 andρt,2 can be regarded as steady-state measuresρ1 andρ2, respectively.
Consequently,Eq. (7)becomes

YS1
φ = ((ρ1 + ρ2)φ + 2(θ − φ))P(S1,whenφ > 0). (8)

While the fact that all the sample paths in S1 (whenφ takes a particular value in [0, θ]) will yield the same
mission worth leads to a simple expression forYS1

φ , the mission worth associated with the sample paths in
S2 are a function ofτ, which is a random variable that can assume a continuum of values. This precludes
the possibility of deriving an expression forYS2

φ that is in a form similar to that ofEq. (8). Accordingly,
we postulate that there exists a closed-form solution forYS2

φ and elaborate it by defining two probability
density functions (pdf). More precisely, we leth be the pdf ofτ, and letf denote the pdf of the time
to system failure that occurs after error recovery. Asf is conditioned on the event that the system has
recovered from an error that is detected successfully atτ, 0< τ ≤ φ, YS2

φ can be formulated as follows:

YS2
φ = γ

∫ φ

0
((ρ1 + ρ2)τ + 2(θ − τ))h(τ)

(
1 −

∫ θ

τ

f(x)dx

)
dτ, (9)

where the term(1− ∫ θ

τ
f(x)dx) is the probability that system failure does not occur in the interval from

error detection to the next onboard upgrade (during this interval Pold
1 and P2 are in mission operation),

given that an error is detected and recovered atτ,0 < τ ≤ φ.
We now arrive at a stage in whichY is formulated in not-yet-elaborated pdf. The decision of how to

proceed from there is important. We choose not to elaborate those pdf, namelyh andf , because they
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would have complex expressions and would thus make the solution ofEq. (9)very difficult. Rather, in
order to take advantage of reward model solution techniques and tools that support them, we prefer to let
those terms that remain at a high level of abstraction guide us in reward structure derivation. Nonetheless,
neitherEq. (8)nor Eq. (9)has been stated in a form that is ready to be mapped to reward structures in
a state-space based model. Accordingly, we seek to exploit reward model solution techniques through
model translation.

4. Translation for reward model solutions

With the motivation described at the end of the previous section, we develop an approach that translates
the design-oriented model successively until it reaches a stage at which the final solution ofY becomes a
simple function of “constituent measures”, each of which can be directly mapped to a reward structure.
Fig. 3 illustrates the process of successive model translation. As shown by the diagram, translation
proceeds along two branches: one for solvingE[W0] and one for solvingE[Wφ] (which is expressed as
the sum ofYS1

φ andYS2
φ ). As indicated byEqs. (5), (8) and (9), solution derivations forE[W0] andYS1

φ

will deal solely with probabilistic measures concerning the sample paths in S1, whereas the terms that
are involved inYS2

φ characterize the system behavior constituting S2. We describe the translation process
for solvingE[W0] andYS1

φ in Section 4.1, and devoteSection 4.2to the explanation of how we translate
YS2
φ step by step.

4.1. Translation based on sample-path analysis

Note that the high-level expressions that we have derived forE[W0] andE[Wφ] in Section 3.3indeed
postulate a stochastic process with a sample-path space that covers S1 and S2. If we view the starting
point of G-OP as time zero (seeFig. 1), this stochastic process can be expressed asX = {Xt|t ∈ [0, θ]}.
Further, if we letA1 denote the set of states ofX in which no error has occurred in the system, then
according to the definition of S1:

P(S1,whenφ = 0) = P(Xθ ∈ A1,whenφ = 0), (10)

P(S1,whenφ > 0) = P(Xθ ∈ A1,whenφ > 0). (11)

It is possible to specify a monolithic model to represent the stochastic processX for solvingP(Xθ ∈
A1, whenφ = 0) andP(Xθ ∈ A1, whenφ > 0), if we choose to use a model type that is highly
expressive, such as stochastic Petri nets or SANs. However, the complexity of the model would make it
impossible for us to achieve solution efficiency, even if the model was comprehensive enough to support
the measures. Specifically, in addition to the problem of state-space size, the fact thatX is characterized by
a pre-designated G-OP durationφ implies the inclusion of a deterministic state transition which prevents
X from being Markovian.

On the other hand, sinceφ is a crucial design parameter whose value determines the transition point
of system operation and is supposed to have a significant impact on performability, we can translate the
model by lettingφ be the cutoff point in breaking down each of the sample paths. More specifically, if
we letU [0,φ] denote the sample-path set that enumerates the system’s behavior within the interval defined
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Fig. 3. Successive model translation.

by the starting point of G-OP and the point corresponding to the pre-designated value ofφ, thenU [0,φ] is
composed of three subsets:

U [0,φ] = {Ua
[0,φ], U

b
[0,φ], U

c
[0,φ]},

where the sample paths in the subsets cover the following categories of system behavior:

Ua
[0,φ] The system goes through the entire length of [0, φ] successfully under the G-OP mode with

no error occurrence.
Ub

[0,φ] An error occurs and is detected atτ (τ ≤ φ); the recovery system goes through(τ, φ]
successfully under the normal mode.
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Uc
[0,φ] An error occurs in(0, φ] but goes undetected, resulting in an immediate system failure,

or an error occurs and is detected atτ (τ ≤ φ), but the recovered system fails (under the
normal mode) in the interval(τ, φ] due to another error.

Similarly, we letV [φ,θ] denote the sample-path set that enumerates the system’s behavior within the
interval defined by the point corresponding to the pre-designated value ofφ andθ (the point for the next
upgrade). ThusV [φ,θ] consists of two subsets:

V [φ,θ] = {V a
[φ,θ], V

c
[φ,θ]},

where the sample paths in the subsets cover the following types of system behavior under the normal
mode (given that the system does not fail byφ):

V a
[φ,θ] The system goes through the period [φ, θ] successfully.

V c
[φ,θ] The system fails during [φ, θ] due to an error that occurs during that period.

Then, the sample-path space ofX, call it S, is a proper subset ofU [0,φ] × V [φ,θ] . More succinctly,
S ⊂ U [0,φ] × V [φ,θ] , as illustrated inFig. 4(a). Note that all the composite sample paths indicated by the
dashed lines with arrows and the sample paths inUc

[0,φ] imply the absorbing states ofX. (Therefore, no
mission worth will be accumulated through those paths.)

The above analysis suggests that we can decomposeX with respect to the pre-designated value ofφ.
More precisely,X can be partitioned into two simpler stochastic processes,X ′ = {X′

t|t ∈ [0, φ]} and
X ′′ = {X′′

t |t ∈ [φ, θ]}. The former represents system behavior during the interval with a pre-designated
lengthφ (φ > 0, but the system may switch from the G-OP mode to normal mode atτ,0 < τ ≤ φ, due to
error recovery), while the latter represents system behavior fromφ to the point at which the next onboard
upgrade is supposed to begin, provided that the system does not fail during [0, φ].

Accordingly,U [0,φ] , which exhaustively enumerates all the possible system behaviors during the interval
[0, φ], becomes the sample-path space ofX ′; likewise,V [φ,θ] is the sample-path space ofX ′′.

Note that for the boundary case in whichφ = 0,X ′ becomes degenerate whileX ′′ becomes the model
that represents the system behavior when G-OP is absent in the entire duration of [0, θ] (i.e., the case
upon whichW0 is defined). Without losing generality, whenφ = 0, V a

[φ,θ] andV c
[φ,θ] can be interpreted,

respectively, as the sets of sample paths representing the scenarios in which: (1) a completely unprotected
system operates properly, and (2) an error causes the unprotected system to fail.

As revealed by the reliability study we conducted in[2], when processes’ message-sending rates are
reasonably high, the likelihood that dormant error conditions will exist in a process state upon a successful
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completion of G-OP or after error recovery is so low that the effect on system behavior is practically
negligible. This result implies that each process involved in mission operation atφ can be considered as
“clean” as it was at time zero. ThusV a

[φ,θ] andV c
[φ,θ] are approximately equivalent toV a

[0,θ−φ] andV c
[0,θ−φ] ,

respectively. In turn, this means thatX ′′ = {X′′
t |t ∈ [φ, θ]} can be treated asX ′′ = {X′′

t |t ∈ [0, θ − φ]}.
Further, asφ ∈ [0, θ], the maximum value of(θ− φ) will be θ. Consequently, this stochastic process can
be expressed asX ′′ = {X′′

t |t ∈ [0, θ]}.
As a result of the decomposition, S1 and S2 can be expressed as the Cartesian products of a subset

from U [0,φ] and a subset fromV [0,θ−φ] . Specifically, as indicated inFig. 4(b), whenφ > 0, each sample
path in S1 can be regarded as a path fromUa

[0,φ] concatenated with a path fromV a
[0,θ−φ] ; but whenφ = 0,

S1 simply equalsV a
[0,θ] . More succinctly:

S1=
{
Ua

[0,φ] × V a
[0,θ−φ] if φ > 0,

V a
[0,θ] if φ = 0.

(12)

Likewise

S2= Ub
[0,φ] × V a

[0,θ−φ] if φ > 0. (13)

Clearly, S2 becomes degenerate ifφ = 0.
The translation-induced model decomposition enables us to solve forP(S1, whenφ = 0) andP(S1,

whenφ > 0) in an efficient way. Specifically, if we letA′
1 andA′′

1 denote, respectively, the sets of states
of X ′ andX ′′ in which no error has occurred in the system, thenEqs. (10) and (11)can be translated into
a combined expression:

P(S1) =
{
P(X′

φ ∈ A′
1)P(X

′′
θ−φ ∈ A′′

1) if φ > 0,

P(X′′
θ ∈ A′′

1) if φ = 0.
(14)

Consequently, each of those transient, instant-of-time measures, namely,P(X′
φ ∈ A′

1), P(X
′′
θ−φ ∈ A′′

1),
andP(X′′

θ ∈ A′′
1), can be solved by defining a reward structure in one of the decomposed models.

As explained inSection 3.3, ρ1 andρ2 can be treated as steady-state instant-of-time measures. This
suggests that we can take one step further in model decomposition by partitioningX ′ into two submodels,
namely, one (with absorbing states) that represents the dependability attributes ofX ′ and another (having
no absorbing states) that represents the performance aspects ofX ′. By defining reward structures in the
latter and computing the expected reward at steady state, we will be able to evaluateρ1 andρ2.

As indicated byFig. 3, based on the reward model solutions of constituent measuresP(X′
φ ∈ A′

1),

P(X′′
θ−φ ∈ A′′

1), P(X
′′
θ ∈ A′′

1), ρ1, andρ2, we will be able to evaluateE[W0] andYS1
φ in a straightforward

fashion. On the other hand, the model decomposition explained above is helpful but not enough for trans-
latingYS2

φ into a form that is conducive to a reward model solution, because as mentioned inSection 3.3,
the mission worth associated with each sample path in S2 is a function ofτ, which is a random variable
that can assume a continuum of values. Hence, we proceed to manipulate the double integral inEq. (9)
analytically, as described in detail in the next section.

4.2. Translation ofYS2
φ

The translation ofYS2
φ aims to ensure that (1) its final form involves only simple, easily interpretable

constituent measures, and (2) none of the resulting constituent measures concerns system behavior going
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across the boundary pointφ. We begin with expanding the right hand side ofEq. (9)as follows:

YS2
φ = γ

(∫ φ

0
(2θ − (2 − (ρ1 + ρ2))τ)h(τ)dτ −

∫ φ

0
(2θ − (2 − (ρ1 + ρ2))τ)h(τ)

∫ θ

τ

f(x)dx dτ

)
.

(15)

If we then rearrange the first term in the parentheses ofEq. (15), we have∫ φ

0
(2θ − (2 − (ρ1 + ρ2)) τ)h(τ)dτ = 2θ

∫ φ

0
h(τ)dτ − (2 − (ρ1 + ρ2))

∫ φ

0
τh(τ)dτ. (16)

Note thatτ has a mixture distribution. This is becauseh(τ) equals zero forτ > φ and thus limτ→∞ H(τ) <

1. Clearly,
∫ φ

0 h(τ)dτ is the probability that an error occurs and is detected byφ when the G-OP duration
is φ. However, as mentioned earlier, the complexity of the system behavior makes it very difficult to
deriveh and compute the integrals without an excessive amount of approximation. Therefore, we choose
not to elaborateh but let it guide us to reach reward model solutions. Specifically, per the interpretation
of

∫ φ

0 h(τ)dτ, if we let A′
3 denote the set of states (ofX ′) in which an error has occurred and been

successfully detected,
∫ φ

0 h(τ)dτ can then be evaluated as the expected instant-of-time reward:∫ φ

0
h(τ)dτ = P(X′

φ ∈ A′
3). (17)

In other words, with a state-space based modelX ′, we can solve
∫ φ

0 h(τ)dτ by assigning a reward rate of
1 to all states inA′

3 and a reward rate of zero to all other states, and computing the expected reward atφ.
Recall that the system behavior implies that: (1) a state in which the system encounters an undetected

error is absorbing, and (2) a successful error detection will result in error recovery that brings the system
back to the normal mode, under which checkpointing and AT (the error detection mechanism) will no
longer be performed. Together with the fact thath(τ) = 0 for τ ∈ (φ,∞), these in turn suggest that mean
time to error detection (measured from the starting point of G-OP)

∫ φ

0 τh(τ)dτ is a meaningful measure,
and can have a reward model solution. Accordingly, if we letA′

2 denote the set of states in which no error
has been detected, andA′

4 denote the set of (absorbing) states in which an error has occurred and caused
a system failure due to unsuccessful error detection (thusA′

4 is a proper subset ofA′
2), we have∫ φ

0
τh(τ)dτ =

∫ φ

0
(P(X′

t ∈ A′
2) − P(X′

t ∈ A′
4))dt, (18)

which implies that to evaluate
∫ φ

0 τh(τ)dτ, we can assign a reward rate of 1 to all states (ofX ′) in A′
2,

a reward rate of−1 to all states inA′
4, and a reward rate of zero to all other states, and then compute

the expected reward accumulated throughφ. Thus, the integrals inEq. (16)(and thus the minuend in
Eq. (15)) can be solved.

We manipulate the subtrahend inEq. (15)in a similar fashion and begin with rearranging the terms:∫ φ

0
(2θ − (2 − (ρ1 + ρ2))τ)h(τ)

∫ θ

τ

f(x)dx dτ

= 2θ
∫ φ

0

∫ θ

τ

h(τ)f(x)dx dτ−(2−(ρ1+ρ2))

∫ φ

0

∫ θ

τ

τh(τ)f(x)dx dτ ≈ 2θ
∫ φ

0

∫ θ

τ

h(τ)f(x)dx dτ.

(19)
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Fig. 5. Translating the area of integration.

We neglect the subtrahend in the above equation because the values of bothρ1 andρ2 will normally (and
preferably) be close to unity, while the value ofθ in the minuend in the same equation is supposed to be
in the range of 1000–10,000 h for the considered applications.

Note also that the expression
∫ φ

0

∫ θ

τ
h(τ)f(x)dx dτ is the probability that an error occurs and is detected

when the system is under the G-OP mode but the system fails due to another error that occurs between
the successful recovery and the next upgrade. However, the area of integration (with respect to the time
x at which a recovered system fails) goes across the boundary between the pre-designated G-OP interval
[0, φ] and the interval [φ, θ] during which the system (that completes G-OP safely) continues mission
operation under the normal mode. That prevents us from obtaining a reward model solution based on the
decomposed modelsX ′ andX ′′. However, by closely inspecting the area of the integration, as shown in
Fig. 5(a), we realize that we can change the coordinates of the integrals such that the orientation of the
integration area will be converted accordingly, as shown inFig. 5(b). In turn, the converted integration
area suggests that the result ofEq. (19)can be broken down into two terms:

2θ
∫ φ

0

∫ θ

τ

h(τ)f(x)dx dτ = 2θ
∫ φ

0

∫ x

0
f(x)h(τ)dτ dx + 2θ

∫ θ

φ

f(x)

∫ φ

0
h(τ)dτ dx. (20)

The second summand inEq. (20)can thus be expressed as the product of two probabilities, namely,∫ φ

0 h(τ)dτ and
∫ θ

φ
f(x)dx (seeEq. (21)). While we have already provided a reward model solution for

the former (seeEq. (17)), we recognize that the latter is the probability that the recovered system will
fail due to the occurrence of another error at a time instant in [φ, θ]. As explained inSection 4.1, we
can obtain a good approximation for

∫ θ

φ
f(x)dx by defining a reward structure inX ′′ and computing the

expected instant-of-time reward at (θ − φ).
On the other hand, the first summand inEq. (20) is not yet in a form that can be interpreted in a

straightforward way. We therefore “change back” the coordinates for this individual constituent measure
so that its area of integration is translated from the darker region (with a triangular shape) inFig. 5(b)
back to the darker region inFig. 5(a). In turn, the subtrahend inEq. (15)finally becomes∫ φ

0
(2θ − (2 − (ρ1 + ρ2))τ)h(τ)

∫ θ

τ

f(x)dx dτ

≈ 2θ
∫ φ

0

∫ φ

τ

h(τ)f(x)dx dτ + 2θ

(∫ φ

0
h(τ)dτ

) (∫ θ

φ

f(x)dx

)
. (21)
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Although the first summand in the above equation also involves a double integral, its area of integration
is bounded byφ. In addition, this double integral can be given a straightforward interpretation, i.e., the
probability that an error is detected when the system is under the G-OP mode and the recovered system
fails byφ (under the normal mode) due to the occurrence of another error. A reward structure can then
be defined accordingly inX ′. To this end, we can evaluate each of the constituent measures forYS2

φ by
mapping it to a reward structure inX ′ orX ′′. More succinctly, if we plug the results ofEqs. (16) and (21)
into Eq. (15), YS2

φ becomes ready to be solved using reward model solution techniques.
In summary, the translation process described thus far converts the terms at the design-oriented level

into the following solvable constituent reward variables (see alsoFig. 3):

• P(X′′
θ ∈ A′′

1), P(X
′
φ ∈ A′

1), andP(X′′
θ−φ ∈ A′′

1).
• ρ1, ρ2.
• ∫ φ

0 h(τ)dτ,
∫ φ

0 τh(τ)dτ,
∫ φ

0

∫ φ

τ
h(τ)f(x)dx dτ, and

∫ θ

φ
f(x)dx.

It becomes apparent that we will be able to obtain the final solution ofY if we construct the following
three reward models at the base-model level:

RMGd A reward model that represents the system behavior during the pre-designated G-OP
interval and supports dependability measures (i.e., a submodel ofX ′ constructed for solving
dependability measures).

RMGp A reward model that represents the system behavior under the G-OP mode and supports
performance-overhead measures (i.e., a submodel ofX ′ constructed for solving
performance-overhead measures).

RMNd A reward model that represents the system behavior under the normal mode.

Details about the mapping between the resulting constituent measures and the reward structures in
RMGd,RMGp, and RMNd are provided in the next section.

5. SAN reward model solutions for constituent measures

We use SANs to realize the final step of model translation. This choice is based on the following
factors: (1) SANs have high-level language constructs that facilitate marking-dependent model specifi-
cations and representation of dependencies among system attributes, and (2) theUltraSANtool provides
convenient specification capabilities for defining reward structures[13], and (3) by adopting and making
minor modifications to the SAN models we developed for our previous (separate) dependability and
performance-cost studies[2,3], we will be able to use them as the reward models RMGd, RMGp, and
RMNd. In the following sections, we briefly describe these SAN reward models and show the spec-
ifications of the SAN-based reward structures which lead to the final solution of the performability
measure.

5.1. SAN reward models

The rich syntax and marking-dependent specification capability of SANs allow us to specify every
aspect of the protocol precisely. However, we may encounter a state-space explosion or experience very
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Fig. 6. SAN reward model RMGd.

slow computation if we attempt to construct a monolithic model, or attempt to make a SAN model a
procedural specification of the MDCD protocol. To avoid those problems, we

1. use three separate reward models, each of which is specified for representing the dependability or
performance-overhead related aspects ofX ′ orX ′′, as explained inSection 4, and

2. minimize explicit representation of the algorithmic details, while ensuring that every aspect of their
impact on the particular measure we seek to solve (in a particular reward model) is captured.

The SAN reward model RMGd, shown inFig. 6, is a modified version of the model we built for studying
the dependability gain from the use of the MDCD protocol[2].

In model construction, we avoid modeling details about checkpoint establishment, deletion, and roll-
back error recovery. Rather, by exploiting the relations among the markings of the places that represent
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whether a process is actually error-contaminated and the process’s knowledge about its state contami-
nation, we are able to characterize the system’s failure behavior precisely with respect to whether mes-
sages sent by potentially contaminated processes will cause system failure. Consider the output gates
P1Nok ext andP2ok ext, which are connected, respectively, to the cases of the timed activities
P1Nmsg andP2msg that represent successful external message sending. The output functions of these
two gates will reset the marking of the placedirty bit to zero, implying that the process states
of P2 and Pold

1 are considered non-contaminated after a message-passing event. These carefully speci-
fied cases and output gates play an important role in accurately and concisely representing the system
behavior in a non-ideal execution environment. In particular, by resettingdirty bit (through the
output function ofP1Nok ext or P2ok ext) while leaving the markings ofP1Octn andP2ctn un-
changed, we are able to enumerate the following scenarios without introducing separate representations
for them:

1. A process that is considered potentially contaminated is actually not contaminated (by own-fault-
caused error or error propagation), and thus its external message results in a successful AT.

2. A process that is considered potentially contaminated is actually contaminated, but its error condi-
tion is not manifested in the external message, thus after that message passes AT, the process state
of P2 or Pold

1 that is considered potentially contaminated prior to the AT is wrongly judged non-
contaminated.

3. A process that is considered non-contaminated (and may or may not be actually contaminated) sends
a correct external message without undergoing AT.

A detailed description of how we extensively exploit marking-dependent specification to represent com-
plex system behavior in a compact model can be found in[2]. In order to represent explicitly whether an
error has been detected in the system, the placedetected is added to the SAN model. Thus, each of
the constituent measures that are related to the event of error detection, namely,

∫ φ

0 h(τ)dτ,
∫ φ

0 τh(τ)dτ,
and

∫ φ

0

∫ φ

τ
h(τ)f(x)dx dτ, can be easily mapped to a reward structure. Note that since mean time to

error occurrence is at least several orders of magnitude greater than the average length of the interval
from the start of an AT execution to its completion, we use an instantaneous activity in the SAN reward
model RMGd (which is intended to support constituent measures concerning dependability) to represent
an AT-based validation, further reducing model complexity.

In contrast, in the SAN reward model RMGp (seeFig. 7), we omit those failure-behavior-related aspects,
such as fault manifestation, error propagation, and unsuccessful error detection[3]. Instead, we focus on
representing the conditions that would require a process to take actions that do not belong to the category
of “forward progress” (e.g., the action to establish a checkpoint or perform an AT).

Since its purpose is to solveρ1 andρ2, the SAN reward model RMGp includes the timed and in-
stantaneous activities that represent the error containment actions of the protocol that are driven by the
message-passing events and the dynamically adjusted confidence in processes, as shown inFig. 7. In
particular, the placesP1oDB andP2DB represent the dirty bits of Pold

1 and P2, respectively. Each of those
places may have a marking of 0 or 1, which can be interpreted as the confidence in the corresponding
process. The timed and instantaneous activities together precisely represent how the MDCD checkpoint-
ing rule and AT-based validation policy are executed. For example, when activated, the timed activity
P2 CKPT indicates that P2 is engaged in a checkpoint establishment, while the instantaneous activity
P2SkipCKPT indicates that P2 is exempted from checkpointing for a particular message-receiving event,
according to the MDCD checkpointing rule.
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Fig. 7. SAN reward model RMGp.

In addition, due to the nature of the measures it is intended to support, the SAN reward model RMGd

emphasizes the effects on system dependability of the interactions between the non-ideal environment
conditions and the behavior of the MDCD protocol. Accordingly, in the model construction, we relax the
design assumptions for an ideal execution environment. In contrast, the purpose of RMGp is to evaluate the
performance overhead resulting from processes’ error containment activities. Since those fault tolerance
mechanisms are directly influenced by the design assumptions, the ideal environment assumptions are
preserved in this SAN reward model.

As shown inFig. 8, the SAN reward model RMNd is rather simple and thus is not discussed here.

5.2. SAN reward structures

As a result of model translation, each of the constituent measures is ready to be mapped to a reward
structure. In addition, theUltraSANtool provides us with a convenient way to define a reward structure
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Fig. 8. SAN reward model RMNd.

by specifying a “predicate-rate” pair[13]. Below we describe how the reward structures are specified in
the SAN reward models presented in the previous section.

5.2.1. Solving constituent measures in RMGd

Fig. 3shows that the constituent measures
∫ φ

0 h(τ)dτ,
∫ φ

0 τh(τ)dτ,
∫ φ

0

∫ φ

τ
h(τ)f(x)dx dτ, andP(X′

φ ∈
A′

1) are supposed to be evaluated in the reward model RMGd. Table 1summarizes how reward structures
are specified in predicate-rate pairs and how the expected reward values are computed for solving those
constituent measures. An explanation of those reward model solutions has been given inSection 4.

5.2.2. Solving constituent measures in RMGp

As indicated inFig. 3, two constituent measures are supposed to be solved in the reward model RMGp,
namely,ρ1 andρ2. For simplicity and clarity of the specification of the predicate-rate pairs, we instead
solve for(1−ρ1)and(1−ρ2), which are the performance-overhead measures for Pnew

1 and P2, respectively.
Table 2enumerates the reward type and predicate-rate pair for each of the two measures.

Note that the predicate-rate pair specified for (1−ρ2) involves more conditions. This is because, unlike
the process Pnew

1 which is always considered as potentially contaminated when the system is under the
G-OP mode, we dynamically adjust the confidence in P2 and perform checkpointing and AT accordingly.

Table 1
Constituent measures and SAN reward structures in RMGd

Measure Reward type Predicate-rate pair∫ φ

0 h(τ)dτ Expected instant-of-time reward atφ MARK(detected)==1 && MARK(failure)==0 1∫ φ

0 τh(τ)dτ Expected accumulated interval-of-time
reward for [0, φ]

MARK(detected)==0 1
MARK(detected)==0 && MARK(failure)==1 −1∫ φ

0

∫ φ

τ
h(τ)

f(x)dx dτ
Expected instant-of-time reward atφ MARK(detected)==1 && MARK(failure)==1 1

P(X′
φ ∈ A′

1) Expected instant-of-time reward atφ MARK(detected)==0 && MARK(failure)==0 1
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Table 2
Constituent measures and SAN reward structures in RMGp

Measure Reward type Predicate-rate pair

1 − ρ1 Expected instant-of-time
reward at steady state

MARK(P1nExt)==1 1

1 − ρ2 Expected instant-of-time
reward at steady state

(MARK(P1nInt)==1 && MARK(P2DB) == 0) ||
(MARK(P2Ext)==1 && MARK(P2DB) == 1)

1

5.2.3. Solving constituent measures in RMNd

As indicated inFig. 3and explained inSection 4.1, three constituent measures should be solved in the
reward model RMNd (seeFig. 8), namely,P(X′′

θ ∈ A′′
1), P(X

′′
θ−φ ∈ A′′

1), and
∫ θ

φ
f(x)dx.

To solveP(X′′
θ ∈ A′′

1) andP(X′′
θ−φ ∈ A′′

1), we assign the fault-manifestation rate of Pnew
1 to the activity

that represents the fault-manifestation behavior of the first software component, and compute the expected
reward values atθ and (θ−φ), respectively. As for

∫ θ

φ
f(x)dx, since it can be interpreted as the probability

that the recovered system (consisting of Pold
1 and P2) fails during the interval [0, θ − φ], we assign the

fault-manifestation rate of Pold
1 to the activity that represents the fault-manifestation behavior of the first

software component, and compute the complement of the expected reward value at (θ − φ). Due to the
similarity among these constituent measures, the expected instant-of-time reward values explained above
can be evaluated using the same predicate-rate pair:

• Predicate: MARK(failure) == 0.
• Rate: 1.

6. Evaluation results

Applying the SAN reward models described inSection 5and usingUltraSAN, we evaluate the per-
formability indexY . Before we proceed to discuss the numerical results, we define the following notation:

µnew fault-manifestation rate of the process corresponding to the newly upgraded software version;
µold fault-manifestation rate of a process corresponding to an old software version;
c coverage of an AT;
λ message-sending rate of a process;
pext probability that the message a process intends to send is an external message;
α acceptance-test completion rate;
β checkpoint-establishment completion rate.

We begin with conducting a study of the optimality of the G-OP durationφ, considering the impact
of the fault-manifestation rate of the upgraded software component. Specifically, we use the parameter
values shown inTable 3, in which all the parameters involving time presume that time is quantified
in hours. Accordingly,λ = 1200 means that the mean time between message sending events (for an
individual process) is 3 s; similarly,α = 6000 andβ = 6000 imply that the mean time to the completion
of an AT-based validation and the mean time to the completion of a checkpoint establishment are both
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Table 3
Parameter value assignment

θ λ µnew µold c Pext α β

10000 1200 10−4 10−8 0.95 0.1 6000 6000

600 ms. Further, we letγ (seeEq. (4)) be a decreasing function ofτ, the mean time to error detection. More
succinctly,γ = 1−τ̄/θ. This function is defined based on the following consideration. Safeguard activities
would no longer be performed afterτ when error detection brings the system back to the normal mode
with Pold

1 and P2 in mission operation; since that implies an unsuccessful (but safe) onboard upgrade, the
performance cost paid for the safeguard activities up toτ would yield an additional reduction of mission
worth, relative to the case of a successful onboard upgrade.

The numerical results from this study are displayed as the curve with solid dots inFig. 9. The values of
the performability index indicate that the optimal duration of the G-OP mode for this particular setting
is 7000 h, which yields the best worth of the mission periodθ, due to the greatest possible reduction
of expected total performance degradation. This implies that for this particular setting, aφ smaller than
7000 would lead to a greater expected performance degradation due to the increased risk of potential
design-fault-caused failure. On the other hand, if we letφ be larger, then the increased performance
degradation due to performance overhead would more than negate the benefit from the extended guarded
operation.

By decrementing the fault-manifestation rate of Pnew
1 (µnew) to 0.5×10−4 (while letting other parameter

values remain the same), we obtain another set of values ofY , as illustrated by the companion curve marked
by hollow dots inFig. 9. The two curves together reveal that the optimality ofφ is very sensitive to the
reliability of the upgraded software component. In particular, we observe that whenµnew is decremented

1

1.1

1.2

1.3

1.4

1.5

1.6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
r
f
o
r
m
a
b
i
l
i
t
y
 
I
n
d
e
x
 
(
Y
)

Guarded-Operation Duration (φ)

µnew   = 0.0001

µnew   = 0.00005

Fig. 9. Effect of fault-manifestation rate on optimal G-OP duration (θ = 10,000).
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Fig. 10. Effect of performance overhead on optimal G-OP duration (θ = 10,000).

from 10−4 to 0.5×10−4, the optimalφ is dropped from 7000 to 5000 h, even though the performance costs
of safeguard activities remain low (thusρ1 andρ2 remain high, and equal 0.98 and 0.95, respectively).
While it is quite obvious that a smallerµnew will favor a shorter duration of the G-OP mode, this study
confirms the relation between the two system attributes and helps us to recognize the sensitivity of this
relation.

In the next study, we change the values ofα andβ to 2500 (i.e., the times to completion of an AT-based
validation and completion of a checkpoint establishment become 1440 ms, up from 600 ms in the previous
study), implying that the performance costs for safeguard activities become higher. The evaluation results
are shown as the curve with tiny hollow triangles inFig. 10, in which we duplicate the curve with solid
dots fromFig. 9 for comparison. With the decremented values of the basic parametersα andβ, ρ1 and
ρ2 (which are “derived parameters”) are reduced to 0.95 and 0.90, respectively. As shown by the curve
with the tiny hollow triangles, the optimalφ for this case is 6000, down from 7000. The change of the
optimalφ is again a result of the tradeoffs between the two types of expected performance degradation.
More specifically, the change is due to the fact that the increased performance overhead tends to further
negate dependability benefits, and thus suggests an earlier cutoff line for guarded operation.

In addition, we carry out an evaluation experiment to investigate the effect of AT’s coverage,c, on
the optimal G-OP duration. The results are displayed inFig. 11. Note that the top curve in the figure
is duplicated fromFig. 10, and consists of the data points resulting from the evaluation experiment that
assumesc = 0.95 and yields overhead measures equal to 0.05 and 0.10 (i.e.,ρ1 = 0.95 andρ1 = 0.90,
respectively). We observe from the figure that while AT’s coverage decreases significantly, the optimal
φ remains the same (i.e., 6000 h), implying that the optimal value ofφ is rather insensitive to variations
of c. This indicates that the tradeoffs between the two types of performance degradation (that due to
the performance cost of G-OP, and that due to potential design-fault-caused failure) chiefly involve the



A.T. Tai et al. / Performance Evaluation 56 (2004) 249–276 271

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
r
f
o
r
m
a
b
i
l
i
t
y
 
I
n
d
e
x
 
(
Y
)

Guarded-Operation Duration (φ)

c = 0.95

c = 0.75

c = 0.50

Fig. 11. Effect of AT coverage on optimal G-OP duration (θ = 10,000).

reliability of software components and the performance overhead of safeguard activities, rather than
the effectiveness of error detection, given that performance costs of AT and checkpointing are low or
moderately low. On the other hand, the value ofY itself is sensitive to variations ofc. As shown in
the figure, the maximum value ofY drops from over 1.45 to about 1.15 whenc is reduced from 0.95
to 0.50.

We have also conducted an experiment in whichc is set to 0.20. In this case, the greatest value of
Y equals 1.06, which is obtained when G-OP duration is 4000. However, this maximum value suggests
that the gained benefit is too insignificant to justify the use of guarded operations of any lengths (when
c = 0.20). Further, when we letc be 0.10,Y becomes less than 1 for anyφ in (0, θ] and is a decreasing
function ofφ, implying that it is not worthwhile to consider G-OP if AT’s coverage is very low. While
those results are fairly intuitive, they show that: (1) the behavior of our model is reasonable, and (2) the
definition ofY allows this performability measure to support decision making in various capacities. More
specifically,Y not only enables us to determine the value ofφ that would yield the greatest reduction
of the expected total performance degradation, but also permits us to examine whether the amount of
resulting benefit (i.e., the extent of degradation reduction) will be significant enough to justify the use of
G-OP under a particular setting.

Note that so far we have usedθ, the time to the next upgrade, as a constant. However, as described
in Section 2, θ is chosen based on a software engineering decision (at the time onboard validation
completes). The decision depends upon at least two factors: (1) the planned duty of the flight software
in the forthcoming mission phases, and (2) the quality of the flight software learned through onboard
validation. Accordingly, we analyze the effects of the value ofθ on the optimality ofφ. Specifically, we
repeat the study that yields the results shown inFig. 9, but reduceθ to 5000 h. The resulting curves are
displayed inFig. 12.
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Fig. 12. Effect of fault-manifestation rate on optimal G-OP duration (θ = 5000).

It is interesting to observe that while other parameter values remain the same as those shown in
Table 3(meaning that the performance and dependability attributes of the system itself are the same
as in the previous study), the reduction ofθ significantly changes the values for the optimalφ. Specif-
ically, the optimal values ofφ for the cases in whichµnew equals 10−4 and 0.5 × 10−4 go down to
2500 and 2000, respectively. In addition, the curves reveal thatY drops at a more significant rate soon
after reaching its maximum value, relative to the case in whichθ equals 10,000. This is a reasonable
result because reliability is generally a decreasing function of time, for a system without maintenance.
More precisely, if we view the ending point of [0, θ] as a point at which the subsequent system main-
tenance (i.e., the next guarded onboard upgrade) is due, then as the anticipated time to this point be-
comes shorter, the likelihood that the system will fail before reaching the forthcoming maintenance
decreases. This, in turn, favors the decision of letting guarded operation end at an earlier point to min-
imize the expected total performance degradation. By inspecting the results of the constituent mea-
sures that are available to us, namely,P(X′′

θ ∈ A′′
1) and

∫ φ

0 h(τ)dτ, we are able to validate this
explanation.

It is worth noting that numerous analytic models for checkpointing algorithm evaluation have been de-
veloped (see[18–20]for example). The majority of checkpointing models focused attention on hardware
transient faults or other types of faults that would not cause concern about the correctness of process states
saved in checkpoints. For the most part, performance-dependability tradeoff studies for checkpointing
algorithms were designed to help determine how often the system in question should take a checkpoint.
In contrast to those models, the performability analysis conducted in this paper deals with the effects
of software design faults in a distributed computing environment. More specifically, our model is con-
cerned with uncertainties about the validity of process states and state contamination caused by message
passing, and is aimed at supporting the decision on how long the system should be under protection. Our
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performability measure is thereby defined in a way that takes into account system behaviorsduring and
beyondthe period of guarded operation. In turn, this implies that we must deal with a set of complicated
sample paths and suggests the feasibility of a model-translation approach.

7. Concluding remarks

We have conducted a model-based performability study that analyzes the guarded-operation duration for
onboard software upgrading. By translating a design-oriented model into an evaluation-oriented model,
we are able to reach a reward model solution for performability indexY that supports the decision on the
duration of guarded operation.

It is always desirable to directly apply efficient analytic techniques and existing tools for solving
modeling problems. In practice, however, there are cases in which desired modeling techniques and tools
cannot be immediately applied to an engineering problem we seek to solve. Although we may simplify
the problem to make it fit a particular modeling method or a completely tool-based solution, we may lose
important information and get results that are inaccurate or even misleading if the required simplification
is excessive.

Accordingly, the intent of this investigation was not to develop a general modeling method superior to
some existing techniques. Instead, our motivation has been to investigate the methods that lead to better
utilization of existing modeling techniques and tools for engineering applications. As exemplified in this
paper, the model-translation approach enables us to expose hidden opportunities to apply efficient model
construction and solution strategies for the evaluation of an otherwise difficult performability measure.
More generally, successive model translation enables us to conduct performability analyses for complex
engineering applications in which boundaries and relationships between subsystems, or, between system
properties considered in a performability measure, are not sufficiently clear from the original problem
formulation. By promoting approaches that bridge the gap between difficult engineering applications
and analytic methods developed by the research community, such as reward model solution techniques,
behavioral decomposition, and hierarchical composition, this effort makes an important contribution to
the area of performance and dependability modeling.

It is also worthwhile noting that unlike separate performance and dependability measures (such as
response time and availability) that can be assessed directly through testbed experiments, performa-
bility measures are often defined to quantify the collective effect of various properties of a system on
its “ability to perform”. Accordingly, in many cases it could be very difficult for us to obtain the fi-
nal solution of a performability measure directly from measurement-based or testbed-simulation-based
evaluation. However, when the problem of solving a performability measure is transformed into that
of evaluating constituent reward variables, it may become possible for us to choose among analytic,
measurement-based, and testbed-simulation-based techniques, or a hybrid combination of them, to com-
pute the individual measures for the final solution. Furthermore, the model-translation approach permits
us to access the results of the constituent measures to gain more insight from a model-based performability
evaluation.

Our current effort is directed toward continuing this investigation by carrying out more case studies
in further depth. We also plan to investigate the feasibility of hybrid composition methods for eval-
uating constituent reward variables; for example, we might combine model-based approaches with
measurement-based and/or simulation-based approaches for a performability evaluation. In addition,
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since we have already developed the GSU middleware and are in the process of porting it to the Future
Deliveries Testbed at JPL, we intend to experimentally validate the parameter values used in our analysis
and the results of the constituent measures through applying testbed-simulation.
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